A sharp result on the poles localization for a Gevrey convex body

Bernard Lascar[1]; Richard Lascar[2]

  • [1] CNRS, Institut de Mathematiques de Jussieu
  • [2] Universite Paris 7, Institut de Mathematiques de Jussieu

Séminaire Équations aux dérivées partielles (1996-1997)

  • Volume: 1996-1997, page 1-9

Abstract

top
In this talk we extend to Gevrey-s obstacles with 1 s < 3 a result on the poles free zone due to J. Sjöstrand [8] for the analytic case.

How to cite

top

Lascar, Bernard, and Lascar, Richard. "A sharp result on the poles localization for a Gevrey convex body." Séminaire Équations aux dérivées partielles 1996-1997 (1996-1997): 1-9. <http://eudml.org/doc/10924>.

@article{Lascar1996-1997,
abstract = {In this talk we extend to Gevrey-s obstacles with $1 \le \{s\} &lt; 3$ a result on the poles free zone due to J. Sjöstrand [8] for the analytic case.},
affiliation = {CNRS, Institut de Mathematiques de Jussieu; Universite Paris 7, Institut de Mathematiques de Jussieu},
author = {Lascar, Bernard, Lascar, Richard},
journal = {Séminaire Équations aux dérivées partielles},
language = {eng},
pages = {1-9},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {A sharp result on the poles localization for a Gevrey convex body},
url = {http://eudml.org/doc/10924},
volume = {1996-1997},
year = {1996-1997},
}

TY - JOUR
AU - Lascar, Bernard
AU - Lascar, Richard
TI - A sharp result on the poles localization for a Gevrey convex body
JO - Séminaire Équations aux dérivées partielles
PY - 1996-1997
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1996-1997
SP - 1
EP - 9
AB - In this talk we extend to Gevrey-s obstacles with $1 \le {s} &lt; 3$ a result on the poles free zone due to J. Sjöstrand [8] for the analytic case.
LA - eng
UR - http://eudml.org/doc/10924
ER -

References

top
  1. Bardos C, G. Lebeau and J. Rauch: Scattering frequencies and Gevrey 3 singularities. Invent. Mat. 90, 77–114. (1987). Zbl0723.35058MR906580
  2. Hargé T, and G. Lebeau: Diffraction par un obstacle convexe. Invent. Math. 118, 161–196. (1994). Zbl0831.35121MR1288472
  3. Hörmander, L: The Analysis of Linear Partial Differential Operators. Volume III. Springer-Verlag 256. Zbl0601.35001
  4. Lascar, B: Propagation des singularités Gevrey pour des opérateurs hyberboliques. American Journal of Mathematics 110, 413–449. (1988). Zbl0653.35085MR944323
  5. Lascar, B: Propagation des singularités Gevrey pour des problèmes aux limites hyperboliques. Comm. in Partial Diff. Equations. 3 (5), 551–571. (1988). Zbl0666.35054MR919442
  6. Lascar, B and R. Lascar: Propagation des singularités Gevrey pour la diffraction. Comm. in Partial Diff. Equation 16 (4 & 5), 547–584. (1991). Zbl0734.35166MR1113098
  7. Lerner, N: Energy methods via coherent states and advanced pseudo-differential calculus. A paraître dans le volume publié a l’occasion du soixante-cinquieme anniversaire du professeur François Trèves Zbl0885.35152
  8. Sjöstrand, J: Density of resonances for strictly convex analytic obstacles. Cann. J. Math. 48 (2), 397–447. (1996). Zbl0863.35072MR1393040
  9. Sjöstrand, J and M. Zworsky: Estimates on the number of scattering poles near the real for strictly convex obstacles. Ann. Inst. Fourier 43 (3), 769–790. (1993). Zbl0784.35073MR1242615
  10. Sjöstrand, J and M. Zworsky: The complex scaling method for scattering by strictly convex obstacles. Arkiv f. Mathematik 33, 1 35–172. (1995). Zbl0839.35095MR1340273

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.