We study maximal pseudocompact spaces calling them also MP-spaces. We show that the product of a maximal pseudocompact space and a countable compact space is maximal pseudocompact. If X is hereditarily maximal pseudocompact then X × Y is hereditarily maximal pseudocompact for any first countable compact space Y. It turns out that hereditary maximal pseudocompactness coincides with the Preiss-Simon property in countably compact spaces. In compact spaces, hereditary MP-property is invariant under...
For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y ⊂ X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelöf spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelöf. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense σ-compact subspace can have...
We obtain some new properties of the class of KC-spaces, that is, those topological spaces in which compact sets are closed. The results are used to generalize theorems of Anderson [1] and Steiner and Steiner [12] concerning complementation in the lattice of -topologies on a set .
A in a space is a family of open subsets of such that for any . A set is if . If every neighbourhood assignment in has a closed and discrete (respectively, discrete) kernel, then is said to be a -space (respectively a dually discrete space). In this paper we show among other things that every GO-space is dually discrete, every subparacompact scattered space and every continuous image of a Lindelöf -space is a -space and we prove an addition theorem for metalindelöf spaces which...
Given a topological property (or a class) , the class dual to (with respect to neighbourhood assignments) consists of spaces such that for any neighbourhood assignment there is with and . The spaces from are called . We continue the study of this duality which constitutes a development of an idea of E. van Douwen used to define -spaces. We prove a number of results on duals of some general classes of spaces establishing, in particular, that any generalized ordered space of countable...
We study when a topological space has a weaker connected topology. Various sufficient and necessary conditions are given for a space to have a weaker Hausdorff or regular connected topology. It is proved that the property of a space of having a weaker Tychonoff topology is preserved by any of the free topological group functors. Examples are given for non-preservation of this property by “nice” continuous mappings. The requirement that a space have a weaker Tychonoff connected topology is rather...
It is shown that both the free topological group and the free Abelian topological group on a connected locally connected space are locally connected. For the Graev’s modification of the groups and , the corresponding result is more symmetric: the groups and are connected and locally connected if is. However, the free (Abelian) totally bounded group (resp., ) is not locally connected no matter how “good” a space is. The above results imply that every non-trivial continuous homomorphism...
We prove that it is independent of ZFC whether every Hausdorff countable space of weight less than has a dense regular subspace. Examples are given of countable Hausdorff spaces of weight which do not have dense Urysohn subspaces. We also construct an example of a countable Urysohn space, which has no dense completely Hausdorff subspace. On the other hand, we establish that every Hausdorff space of -weight less than has a dense completely Hausdorff (and hence Urysohn) subspace. We show that...
Download Results (CSV)