On the recognizability of self-generating sets.
We propose a variation of Wythoff’s game on three piles of tokens, in the sense that the losing positions can be derived from the Tribonacci word instead of the Fibonacci word for the two piles game. Thanks to the corresponding exotic numeration system built on the Tribonacci sequence, deciding whether a game position is losing or not can be computed in polynomial time.
For abstract numeration systems built on exponential regular languages (including those coming from substitutions), we show that the set of real numbers having an ultimately periodic representation is if the dominating eigenvalue of the automaton accepting the language is a Pisot number. Moreover, if is neither a Pisot nor a Salem number, then there exist points in which do not have any ultimately periodic representation.
We propose a variation of Wythoff's game on three piles of tokens, in the sense that the losing positions can be derived from the Tribonacci word instead of the Fibonacci word for the two piles game. Thanks to the corresponding exotic numeration system built on the Tribonacci sequence, deciding whether a game position is losing or not can be computed in polynomial time.
An infinite word is -automatic if, for all , its st letter is the output of a deterministic automaton fed with the representation of in the considered numeration system . In this extended abstract, we consider an analogous definition in a multidimensional setting and present the connection to the shape-symmetric infinite words introduced by Arnaud Maes. More precisely, for , we state that a multidimensional infinite word over a finite alphabet is -automatic for some abstract numeration...
Page 1