The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

On the angles between certain arithmetically defined subspaces of 𝐂 n

Robert Brooks — 1987

Annales de l'institut Fourier

If { v i } and { w j } are two families of unitary bases for C n , and θ is a fixed number, let V n and W n be subspaces of C n spanned by [ θ · n ] vectors in { v i } and { w j } respectively. We study the angle between V n and W n as n goes to infinity. We show that when { v i } and { w j } arise in certain arithmetically defined families, the angles between V n and W n may either tend to 0 or be bounded away from zero, depending on the behavior of an associated eigenvalue problem.

Non-Sunada graphs

Robert Brooks — 1999

Annales de l'institut Fourier

We consider the question of whether there is a converse to the Sunada Theorem in the context of k -regular graphs. We give a weak converse to the Sunada Theorem, which gives a necessary and sufficient condition for two graphs to be isospectral in terms of a Sunada-like condition, and show by example that a strong converse does not hold.

Page 1

Download Results (CSV)