Sur la géométrie des structures de contact invariantes
À toute structure de contact invariante par rapport à une action localement libre d’un groupe de Lie sur une variété compacte , on associe une fibration au-dessus de nouée, à la manière des pages d’un livre ouvert, le long de l’ensemble des points où l’orbite de l’action est tangente au plan de . Après en avoir déduit des contraintes sur et , on construit des structures de contact invariantes nouvelles à partir de fibrations nouées et on en donne des critères de classification équivariante....