Free pencils on divisors.
Given a symplectic fibration , with compact and symplectic and the fibres complex projective, we produce symplectic submanifolds of analytic in the vertical direction, and apply this to complex vector bundles on symplectic manifolds.
Motivated by the notion of Seshadri-ampleness introduced in [11], we conjecture that the genus and the degree of a smooth set-theoretic intersection should satisfy a certain inequality. The conjecture is verified for various classes of set-theoretic complete intersections.
A notion of positivity, called Seshadri ampleness, is introduced for a smooth curve in a polarized smooth projective -fold , whose motivation stems from some recent results concerning the gonality of space curves and the behaviour of stable bundles on under restriction to . This condition is stronger than the normality of the normal bundle and more general than being defined by a regular section of an ample rank- vector bundle. We then explore some of the properties of Seshadri-ample curves....
Page 1