Gevrey hypoellipticity for partial differential equations with characteristics of higher multiplicity.
We prove local solvability in Gevrey spaces for a class of semilinear partial differential equations. The linear part admits characteristics of multiplicity k ≥ 2 and data are fixed in , 1 < σ < k/(k-1). The nonlinearity, containing derivatives of lower order, is assumed of class with respect to all variables.
Vengono considerate equazioni alle derivate parziali semilineari con caratteristiche multiple. Si studia in particolare la loro risolubilità locale e la buona positura del problema di Cauchy nell'ambito delle classi di Gevrey.
Page 1