Let be a compactly generated locally compact group and let be a compact generating set. We prove that if has polynomial growth, then is a Følner sequence and we give a polynomial estimate of the rate of decay of Our proof uses only two ingredients: the doubling property and a weak geodesic property that we call Property (M). As a matter of fact, the result remains true in a wide class of doubling metric measured spaces including manifolds and graphs. As an application, we obtain a -pointwise...
In this paper, we study the asymptotic behavior of the volume of spheres in metric measure spaces. We first introduce a general setting adapted to the study of asymptotic isoperimetry in a general class of a metric measure space...
We prove that the first reduced cohomology with values in a mixing -representation, , vanishes for a class of amenable groups including connected amenable Lie groups. In particular this solves for this class of amenable groups a conjecture of Gromov saying that every finitely generated amenable group has no first reduced -cohomology. As a byproduct, we prove a conjecture by Pansu. Namely, the first reduced -cohomology on homogeneous, closed at infinity, Riemannian manifolds vanishes. We also...
We introduce various notions of large-scale isoperimetric profile on a locally compact, compactly generated amenable group. These asymptotic quantities provide measurements of the degree of amenability of the group. We are particularly interested in a class of groups with exponential volume growth which are the most amenable possible in that sense. We show that these groups share various interesting properties such as the speed of on-diagonal decay of random walks, the vanishing of the reduced first...
We give a complete characterization of the locally compact groups that are non elementary Gromov-hyperbolic and amenable. They coincide with the class of mapping tori of discrete or continuous one-parameter groups of compacting automorphisms. We moreover give a description of all Gromov-hyperbolic locally compact groups with a cocompact amenable subgroup: modulo a compact normal subgroup, these turn out to be either rank one simple Lie groups, or automorphism groups of semiregular trees acting doubly...
Download Results (CSV)