A generalization of the global limit theorems of R. P. Agnew.
Let be an array of rowwise pairwise negative quadrant dependent mean 0 random variables and let . Conditions are given for completely and for completely. As an application of these results, we obtain a complete convergence theorem for the row sums of the dependent bootstrap samples arising from a sequence of i.i.d. random variables .
The structure of linearly negative quadrant dependent random variables is extended by introducing the structure of -linearly negative quadrant dependent random variables (). For a sequence of -linearly negative quadrant dependent random variables and (resp. ), conditions are provided under which in (resp. in ). Moreover, for , conditions are provided under which converges completely to . The current work extends some results of Pyke and Root (1968) and it extends and improves some...
The authors provide a correction to “Some mean convergence and complete convergence theorems for sequences of -linearly negative quadrant dependent random variables”.
Page 1