The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

Complete convergence theorems for normed row sums from an array of rowwise pairwise negative quadrant dependent random variables with application to the dependent bootstrap

Andrew RosalskyYongfeng Wu — 2015

Applications of Mathematics

Let { X n , j , 1 j m ( n ) , n 1 } be an array of rowwise pairwise negative quadrant dependent mean 0 random variables and let 0 < b n . Conditions are given for j = 1 m ( n ) X n , j / b n 0 completely and for max 1 k m ( n ) | j = 1 k X n , j | / b n 0 completely. As an application of these results, we obtain a complete convergence theorem for the row sums j = 1 m ( n ) X n , j * of the dependent bootstrap samples { { X n , j * , 1 j m ( n ) } , n 1 } arising from a sequence of i.i.d. random variables { X n , n 1 } .

Some mean convergence and complete convergence theorems for sequences of m -linearly negative quadrant dependent random variables

Yongfeng WuAndrew RosalskyAndrei Volodin — 2013

Applications of Mathematics

The structure of linearly negative quadrant dependent random variables is extended by introducing the structure of m -linearly negative quadrant dependent random variables ( m = 1 , 2 , ). For a sequence of m -linearly negative quadrant dependent random variables { X n , n 1 } and 1 < p < 2 (resp. 1 p < 2 ), conditions are provided under which n - 1 / p k = 1 n ( X k - E X k ) 0 in L 1 (resp. in L p ). Moreover, for 1 p < 2 , conditions are provided under which n - 1 / p k = 1 n ( X k - E X k ) converges completely to 0 . The current work extends some results of Pyke and Root (1968) and it extends and improves some...

Page 1

Download Results (CSV)