Transience/recurrence and the speed of a one-dimensional random walk in a “have your cookie and eat it” environment
Consider a variant of the simple random walk on the integers, with the following transition mechanism. At each site , the probability of jumping to the right is ()∈[½, 1), until the first time the process jumps to the left from site , from which time onward the probability of jumping to the right is ½. We investigate the transience/recurrence properties of this process in both deterministic and stationary, ergodic environments {()}∈. In deterministic environments, we also study the speed of the...