The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Transience/recurrence and the speed of a one-dimensional random walk in a “have your cookie and eat it” environment

Ross G. Pinsky — 2010

Annales de l'I.H.P. Probabilités et statistiques

Consider a variant of the simple random walk on the integers, with the following transition mechanism. At each site , the probability of jumping to the right is ()∈[½, 1), until the first time the process jumps to the left from site , from which time onward the probability of jumping to the right is ½. We investigate the transience/recurrence properties of this process in both deterministic and stationary, ergodic environments {()}∈. In deterministic environments, we also study the speed of the...

Transience, recurrence and speed of diffusions with a non-markovian two-phase “use it or lose it” drift

Ross G. Pinsky — 2014

Annales de l'I.H.P. Probabilités et statistiques

We investigate the transience/recurrence of a non-Markovian, one-dimensional diffusion process which consists of a Brownian motion with a non-anticipating drift that has two phases – a transient to + mode which is activated when the diffusion is sufficiently near its running maximum, and a recurrent mode which is activated otherwise. We also consider the speed of a diffusion with a two-phase drift, where the drift is equal to a certain non-negative constant when the diffusion is sufficiently near...

Page 1

Download Results (CSV)