The marked length spectrum vs. the Laplace spectrum on forms on Riemannian nilmanifolds.
We construct the first examples of continuous families of isospectral Riemannian metrics that are not locally isometric on closed manifolds , more precisely, on , where is a torus of dimension and is a sphere of dimension . These metrics are not locally homogeneous; in particular, the scalar curvature of each metric is nonconstant. For some of the deformations, the maximum scalar curvature changes during the deformation.
Page 1