The length spectrum of riemannian two-step nilmanifolds

Ruth Gornet; Maura B. Mast

Annales scientifiques de l'École Normale Supérieure (2000)

  • Volume: 33, Issue: 2, page 181-209
  • ISSN: 0012-9593

How to cite

top

Gornet, Ruth, and Mast, Maura B.. "The length spectrum of riemannian two-step nilmanifolds." Annales scientifiques de l'École Normale Supérieure 33.2 (2000): 181-209. <http://eudml.org/doc/82513>.

@article{Gornet2000,
author = {Gornet, Ruth, Mast, Maura B.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Heisenberg-like group; Heisenberg type group; length spectrum; Laplace spectrum; isospectral; two-step nilmanifold},
language = {eng},
number = {2},
pages = {181-209},
publisher = {Elsevier},
title = {The length spectrum of riemannian two-step nilmanifolds},
url = {http://eudml.org/doc/82513},
volume = {33},
year = {2000},
}

TY - JOUR
AU - Gornet, Ruth
AU - Mast, Maura B.
TI - The length spectrum of riemannian two-step nilmanifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2000
PB - Elsevier
VL - 33
IS - 2
SP - 181
EP - 209
LA - eng
KW - Heisenberg-like group; Heisenberg type group; length spectrum; Laplace spectrum; isospectral; two-step nilmanifold
UR - http://eudml.org/doc/82513
ER -

References

top
  1. [1] Anselone P., Collectively Compact Operator Approximation Theory and Applications to Integral Equations, Prentice Hall, 1971. Zbl0228.47001MR56 #1753
  2. [2] Bérard P., Spectral Geometry : Direct and Inverse Problems, Lecture Notes in Mathematics, Vol. 1207, Springer, Berlin, 1980. Zbl0608.58001MR88f:58146
  3. [3] Berger M., Le spectre des variétés Riemanniennes, Rev. Roum. Math. Pures et Appl. 13 (1968) 915-931. Zbl0181.49603MR39 #892
  4. [4] Berger M., Gauduchon P., Mazet E., Le Spectre d'Une Variété Riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer, Berlin, 1971. Zbl0223.53034MR43 #8025
  5. [5] Berndt J., Tricerri F., Vanhecke L., Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces, Lecture Notes in Mathematics, Vol. 1598, Springer, Berlin, 1995. Zbl0818.53067MR97a:53068
  6. [6] Besse A.L., Manifolds all of Whose Geodesics are Closed, Springer, Berlin, 1978. Zbl0387.53010MR80c:53044
  7. [7] Blanchard H., Private communication. 
  8. [8] Buser P., Geometry and Spectra of Compact Riemann Surfaces, Progress in Mathematics, Vol. 106, Birkhäuser, 1992. Zbl0770.53001MR93g:58149
  9. [9] Colin de Verdière Y., Spectre du Laplacian et longueur des géodesiques periodiques I, II, Compositio Math. 27 (1973) 83-106, 159-184. Zbl0272.53034MR50 #1293
  10. [10] Damek E., Ricci F., A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992) 139-142. Zbl0755.53032MR93b:53043
  11. [11] Duistermaat J.J., Guillemin V.W., The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1977) 39-79. Zbl0307.35071MR53 #9307
  12. [12] Eberlein P., Geometry of two-step nilpotent groups with a left invariant metric, Ann. Scien. de l'Ecole Norm. Sup. 27 (1994) 611-660. Zbl0820.53047MR95m:53059
  13. [13] Eberlein P., Geometry of two-step nilpotent groups with a left invariant metric II, Trans. Amer. Math. Soc. 343 (1994) 805-828. Zbl0830.53039MR95b:53061
  14. [14] Fanaï H.-R., Rigidité du flot géodésique de certaines nilvariétés de rang deux, in : Séminaire de Théorie Spectrale et Géométrie (Grenoble), 1996-1997, pp. 25-36. Zbl0902.58027MR99c:53036
  15. [15] Fanaï H.-R., Conjugaison géodésique des nilvariétés de rang deux, Journal of Lie Theory (1999) (to appear). Zbl0990.53084
  16. [16] Gohberg I., Lancaster P., Rodman L., Matrix Polynomials, Academic Press, 1982. Zbl0482.15001MR84c:15012
  17. [17] Gordon C.S., The Laplace spectra versus the length spectra of Riemannian manifolds, Contemporary Math. 51 (1986) 63-79. Zbl0591.53042MR87i:58170
  18. [18] Gordon C.S., Isospectral closed Riemannian manifolds which are not locally isometric, J. Differential Geom. 37 (1993) 639-649. Zbl0792.53037MR94b:58098
  19. [19] Gordon C.S., Isospectral closed Riemannian manifolds which are not locally isometric : II, in : Brooks R., Gordon C.S., Perry P.(Eds.), Contemporary Mathematics : Geometry of the Spectrum, Vol. 173, Amer. Math. Soc., 1994, pp. 121-131. Zbl0811.58063MR95k:58166
  20. [20] Gordon C.S., Gornet R., Schueth D., Webb D.L., Wilson E.N., Isospectral deformations of closed Riemannian manifolds with different scalar curvature, Ann. Inst. Fourier (Grenoble) 48 (1998) 593-607. Zbl0922.58083MR99b:53049
  21. [21] Gordon C.S., Wilson E.N., The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J. 33 (1986) 253-271. Zbl0599.53038MR87k:58275
  22. [22] Gordon C.S., Wilson E.N., Continuous families of isospectral Riemannian manifolds which are not locally isometric, J. Differential Geom. 47 (1997) 504-529. Zbl0915.58104MR99a:58159
  23. [23] Gornet R., The length spectrum and representation theory on two and three-step nilpotent Lie groups, in : Brooks R., Gordon C.S., Perry P. (Eds.), Contemporary Mathematics : Geometry of the Spectrum, Vol. 173, Amer. Math. Soc., 1994, pp. 133-156. Zbl0842.22008MR95i:22015
  24. [24] Gornet R., A new construction of isospectral Riemannian nilmanifolds with examples, Michigan Math. J. 43 (1996) 159-188. Zbl0851.53024MR97b:58143
  25. [25] Gornet R., The marked length spectrum vs. the p-form spectrum of Riemannian nilmanifolds, Comment. Math. Helv. 71 (1996) 297-329. Zbl0861.58043MR97e:58222
  26. [26] Huber H., Über eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der hyperbolischen Ebene, Comment. Math. Helv. 30 (1955) 20-62. Zbl0065.31603MR17,603b
  27. [27] Huber H., Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen I, Math. Ann. 138 (1959) 1-26 ; II, Math. Ann. 142 (1961) 385-398 ; Nachtrag zu II, Math. Ann. 143 (1961) 463-464. Zbl0101.05702MR27 #4923
  28. [28] Kaplan A., Riemannian nilmanifolds attached to Clifford modules, Geom. Dedicata 11 (1981) 127-136. Zbl0495.53046MR82h:22008
  29. [29] Kaplan A., On the geometry of groups of Heisenberg type, Bull. London Math. Soc. 15 (1983) 35-42. Zbl0521.53048MR84h:53063
  30. [30] Kaplan A., Lie groups of Heisenberg type, in : Conference on Differential Geometry on Homogeneous Spaces (Turin 1983), Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), 1984, pp. 117-130. Zbl0634.53033MR87d:53092
  31. [31] Kato T., Perturbation Theory for Linear Operators, Classics in Mathematics, Springer, Berlin, 1984. 
  32. [32] Kato T., A Short Introduction to Perturbation Theory for Linear Operators, Springer, Berlin, 1982. Zbl0493.47008MR83m:47015
  33. [33] Lee K.B., Park K., Smoothly closed geodesics in 2-step nilmanifolds, Indiana Univ. Math. J. 45 (1996) 1-14. Zbl0862.53037MR97h:53044
  34. [34] Mast M., Closed geodesics in 2-step nilmanifolds, Indiana Univ. Math. J. 43 (1994) 885-911. Zbl0818.53065MR96a:53057
  35. [35] Milnor J., Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. USA 51 (1964) 542. Zbl0124.31202MR28 #5403
  36. [36] Milnor J., Curvatures of left invariant metrics on Lie groups, Adv. Math. 21 (1976) 293-329. Zbl0341.53030MR54 #12970
  37. [37] Pesce H., Déformations L-isospectrales sur les nilvariétés de rang deux, C. R. Acad. Sci. Paris, Série I 315 (1992) 821-823. Zbl0761.53023MR94b:58101
  38. [38] Pesce H., Calcul du spectre d'une nilvariété de rang deux et applications, Trans. Amer. Math. Soc. 339 (1993) 433-461. Zbl0791.58099MR93k:58227
  39. [39] Pesce H., Une formule de Poisson pour les variétés de Heisenberg, Duke Math. J. 73 (1994) 79-95. Zbl0803.58054MR95i:58183
  40. [40] Raghunathan M.S., Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebeite, Vol. 68, Springer, Berlin, 1972. Zbl0254.22005MR58 #22394a
  41. [41] Schueth D., Continuous families of isospectral metrics on simply connected manifolds, Ann. of Math. (2) 149 (1) (1999) 287-308. Zbl0964.53027MR2000c:58063
  42. [42] Szabó Z., Locally nonisometric yet super isospectral spaces, Geom. Funct. Anal. 9 (1) (1999) 185-214. Zbl0964.53026MR2000a:58089
  43. [43] Tanno S., Eigenvalues of the Laplacian of Riemannian manifolds, Tohoku Math. J. 25 (1973) 391-403. Zbl0266.53033MR48 #12405
  44. [44] Varadarajan V.S., Lie Groups, Lie Algebras, and their Representations, Graduate Texts in Mathematics, Vol. 102, Springer, Berlin, 1984. Zbl0955.22500MR85e:22001
  45. [45] Wolf J., Curvature in nilpotent Lie groups, Proc. Amer. Math. Soc. 15 (1964) 271-274. Zbl0134.17905MR28 #5405

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.