A survey of cell population dynamics.
We consider singular perturbation variational problems depending on a small parameter . The right hand side is such that the energy does not remain bounded as . The asymptotic behavior involves internal layers where most of the energy concentrates. Three examples are addressed, with limits elliptic, parabolic and hyperbolic respectively, whereas the problems with are elliptic. In the parabolic and hyperbolic cases, the propagation of singularities appear as an integral property after integrating...
We consider the variational formulation of the problem of elastic shells in the membrane approximation, when the medium surface is hyperbolic. It appears that the corresponding bilinear form behaves as some kind of two-dimensional elasticity without shear rigidity. This amounts to saying that the membrane behaves rather as a net made of elastic strings disposed along the asymptotic curves of the surface than as an elastic two-dimensional medium. The mathematical and physical reasons of this behavior...
We consider singular perturbation variational problems depending on a small parameter ε. The right hand side is such that the energy does not remain bounded as ε → 0. The asymptotic behavior involves internal layers where most of the energy concentrates. Three examples are addressed, with limits elliptic, parabolic and hyperbolic respectively, whereas the problems with ε > 0 are elliptic. In the parabolic and hyperbolic cases, the propagation of singularities appear as an integral property after...
We study tensor norms and operator ideals related to the ideal , 1 < p < ∞, 0 < σ < 1, of (p,σ)-absolutely continuous operators of Matter. If α is the tensor norm associated with (in the sense of Defant and Floret), we characterize the -nuclear and - integral operators by factorizations by means of the composition of the inclusion map with a diagonal operator , where r is the conjugate exponent of p’/(1-σ). As an application we study the reflexivity of the components of the ideal...
The spaces L¹(m) of all m-integrable (resp. of all scalarly m-integrable) functions for a vector measure m, taking values in a complex locally convex Hausdorff space X (briefly, lcHs), are themselves lcHs for the mean convergence topology. Additionally, is always a complex vector lattice; this is not necessarily so for L¹(m). To identify precisely when L¹(m) is also a complex vector lattice is one of our central aims. Whenever X is sequentially complete, then this is the case. If, additionally,...
We study compactness and related topological properties in the space L¹(m) of a Banach space valued measure m when the natural topologies associated to convergence of vector valued integrals are considered. The resulting topological spaces are shown to be angelic and the relationship of compactness and equi-integrability is explored. A natural norming subset of the dual unit ball of L¹(m) appears in our discussion and we study when it is a boundary. The (almost) complete continuity of the integration...
We obtain theorems of metrization and quasi-metrization for several topologies of weak* type on the unit ball of the dual of any separable quasi-normed cone. This is done with the help of an appropriate version of the Alaoglu theorem which is also obtained here.
Page 1