Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

On distances and metrics in discrete ordered sets

Stephan FoldesSándor Radelecki — 2021

Mathematica Bohemica

Discrete partially ordered sets can be turned into distance spaces in several ways. The distance functions may or may not satisfy the triangle inequality and restrictions of the distance to finite chains may or may not coincide with the natural, difference-of-height distance measured in a chain. It is shown that for semilattices the semimodularity ensures the good behaviour of the distances considered. The Jordan-Dedekind chain condition, which is weaker than semimodularity, is equivalent to the...

Congruence schemes and their applications

Ivan ChajdaSándor Radelecki — 2005

Commentationes Mathematicae Universitatis Carolinae

Using congruence schemes we formulate new characterizations of congruence distributive, arithmetical and majority algebras. We prove new properties of the tolerance lattice and of the lattice of compatible reflexive relations of a majority algebra and generalize earlier results of H.-J. Bandelt, G. Cz'{e}dli and the present authors. Algebras whose congruence lattices satisfy certain 0-conditions are also studied.

The minimal closed monoids for the Galois connection End - Con

The minimal nontrivial endomorphism monoids M = End Con ( A , F ) of congruence lattices of algebras ( A , F ) defined on a finite set A are described. They correspond (via the Galois connection End - Con ) to the maximal nontrivial congruence lattices Con ( A , F ) investigated and characterized by the authors in previous papers. Analogous results are provided for endomorphism monoids of quasiorder lattices Quord ( A , F ) .

Page 1

Download Results (CSV)