The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Nous montrons qu’une variété riemannienne de dimension , à courbure de Ricci et à courbure sectionnelle majorée, est une sphère dès que la première valeur propre de son laplacien (resp. son diamètre) est suffisamment proche de (resp. de ).
L’objet de cette étude est de trouver des constantes explicites (dépendant d’un minimum d’invariants riemanniens et les plus faibles possible) dans différents types d’inégalités de Sobolev.
Download Results (CSV)