On condition of a stratified mapping
For a stratified mapping , we consider the condition concerning the kernel of the differential of . We show that the condition is equivalent to the condition which has a more obvious geometric content.
For a stratified mapping , we consider the condition concerning the kernel of the differential of . We show that the condition is equivalent to the condition which has a more obvious geometric content.
Let be a set-germ at such that . We say that is a direction of at if there is a sequence of points tending to such that as . Let denote the set of all directions of at . Let be subanalytic set-germs at such that . We study the problem of whether the dimension of the common direction set, is preserved by bi-Lipschitz homeomorphisms. We show that although it is not true in general, it is preserved if the images of and are also subanalytic. In particular...
To a given analytic function germ , we associate zeta functions , , defined analogously to the motivic zeta functions of Denef and Loeser. We show that our zeta functions are rational and that they are invariants of the blow-analytic equivalence in the sense of Kuo. Then we use them together with the Fukui invariant to classify the blow-analytic equivalence classes of Brieskorn polynomials of two variables. Except special series of singularities our method classifies as well the blow-analytic...
In this paper we introduce the notion of modified Nash triviality for a family of zero sets of real polynomial map-germs as a desirable one. We first give a Nash isotopy lemma which is a useful tool to show triviality. Then, using it, we prove two types of modified Nash triviality theorem and a finite classification theorem for this triviality. These theorems strengthen similar topological results.
In a previous paper by Koike and Paunescu, it was introduced the notion of direction set for a subset of a Euclidean space, and it was shown that the dimension of the common direction set of two subanalytic subsets, called , is preserved by a bi-Lipschitz homeomorphism, provided that their images are also subanalytic. In this paper we give a generalisation of the above result to sets definable in an o-minimal structure on an arbitrary real closed field. More precisely, we first prove our main theorem...
Page 1