Alcune questioni algebrico-differenziali
It is shown the falsehood of a presumed counterexample for the four colour conjecture.
It is shown that, if is a closed curve of a projective and denotes any other closed curve lying on the developable surface circumscribed to , it is possible to attach to and a projective integral invariant, , having a simple metrical definition (given in n. 3, Cor. I). Moreover, it is proved (Theor. VII and Cor. II) that this invariant vanishes whenever is semialgebraic (i.e., obtainable as the intersection of with an algebraic primal of ) and that, if , ...
Una questione generale di notevole importanza pratica e teorica, ma che non mi consta sia mai stata studiata sistematicamente, è quella che segue. Dati due insiemi N, R ed un'applicazione del primo nel secondo, si vogliano dedurre certe peculiarità di N in relazione a da un minimo di informazioni relative al modo come opera su certi sottoinsiemi di opportunamente scelti. Un caso assai semplice, tanto da sembrare a prima giunta banale, è quello in cui l'insieme risulti finito ed sia il...
It is shown that independent integrals of any given differential system of rank in variables define a Jacobian variety that, if not empty, is of dimension not less than and generally equal to (n. 3); this variety is always invariant for the given differential system (n. 4). In the case of a single integral, i.e. when , these results were already obtained by T. Levi-Civita [1-5]; then it may be added that any integral is necessarily constant along its Jacobian variety (n. 5).
The authors give the following characterization of the external lines to an irreducible conic of : If every chord or tangent of an irreducible conic meets a set of points in a unique point, then is necessarily given by all the points of a line external to . While this result admits no analogue in the real field, a number of similar properties can be established or investigated in any Galois geometry.
Page 1