The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

A new approach for solving nonlinear BVP's on the half-line for second order equations and applications

Serena Matucci — 2015

Mathematica Bohemica

We present a new approach to solving boundary value problems on noncompact intervals for second order differential equations in case of nonlocal conditions. Then we apply it to some problems in which an initial condition, an asymptotic condition and a global condition is present. The abstract method is based on the solvability of two auxiliary boundary value problems on compact and on noncompact intervals, and uses some continuity arguments and analysis in the phase space. As shown in the applications,...

On some boundary value problems for second order nonlinear differential equations

Zuzana DošláMauro MariniSerena Matucci — 2012

Mathematica Bohemica

We investigate two boundary value problems for the second order differential equation with p -Laplacian ( a ( t ) Φ p ( x ' ) ) ' = b ( t ) F ( x ) , t I = [ 0 , ) , where a , b are continuous positive functions on I . We give necessary and sufficient conditions which guarantee the existence of a unique (or at least one) positive solution, satisfying one of the following two boundary conditions: i ) x ( 0 ) = c > 0 , lim t x ( t ) = 0 ; ii ) x ' ( 0 ) = d < 0 , lim t x ( t ) = 0 .

On unbounded solutions for differential equations with mean curvature operator

Zuzana DošláMauro MariniSerena Matucci — 2025

Czechoslovak Mathematical Journal

We present necessary and sufficient conditions for the existence of unbounded increasing solutions to ordinary differential equations with mean curvature operator. The results illustrate the asymptotic proximity of such solutions with those of an auxiliary linear equation on the threshold of oscillation. A new oscillation criterion for equations with mean curvature operator, extending Leighton criterion for linear Sturm-Liouville equation, is also derived.

Page 1

Download Results (CSV)