We study compressible isentropic Navier-Stokes-Poisson equations in . With some appropriate assumptions on the density, velocity and potential, we show that the classical solution of the Cauchy problem for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing will blow up in finite time. The proof is based on a contradiction argument, which relies on proving the conservation of total mass and total momentum.
We provide a theoretical study of the iterative hard thresholding with partially known support set (IHT-PKS) algorithm when used to solve the compressed sensing recovery problem. Recent work has shown that IHT-PKS performs better than the traditional IHT in reconstructing sparse or compressible signals. However, less work has been done on analyzing the performance guarantees of IHT-PKS. In this paper, we improve the current RIP-based bound of IHT-PKS algorithm from to , where is the restricted...
Download Results (CSV)