Blow-up for 3-D compressible isentropic Navier-Stokes-Poisson equations
We study compressible isentropic Navier-Stokes-Poisson equations in . With some appropriate assumptions on the density, velocity and potential, we show that the classical solution of the Cauchy problem for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing will blow up in finite time. The proof is based on a contradiction argument, which relies on proving the conservation of total mass and total momentum.