The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The concept of an extending ideal in a modular lattice is introduced. A translation of module-theoretical concept of ojectivity (i.e. generalized relative injectivity) in the context of the lattice of ideals of a modular lattice is introduced. In a modular lattice satisfying a certain condition, a characterization is given for direct summands of an extending ideal to be mutually ojective. We define exchangeable decomposition and internal exchange property of an ideal in a modular lattice. It is...
The concept of a Goldie extending module is generalized to a Goldie extending element in a lattice. An element of a lattice with is said to be a Goldie extending element if and only if for every there exists a direct summand of such that is essential in both and . Some properties of such elements are obtained in the context of modular lattices. We give a necessary condition for the direct sum of Goldie extending elements to be Goldie extending. Some characterizations of a decomposition...
Download Results (CSV)