Goldie extending elements in modular lattices
Shriram K. Nimbhorkar; Rupal C. Shroff
Mathematica Bohemica (2017)
- Volume: 142, Issue: 2, page 163-180
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topNimbhorkar, Shriram K., and Shroff, Rupal C.. "Goldie extending elements in modular lattices." Mathematica Bohemica 142.2 (2017): 163-180. <http://eudml.org/doc/288109>.
@article{Nimbhorkar2017,
abstract = {The concept of a Goldie extending module is generalized to a Goldie extending element in a lattice. An element $a$ of a lattice $L$ with $0$ is said to be a Goldie extending element if and only if for every $b \le a$ there exists a direct summand $c$ of $a$ such that $b \wedge c$ is essential in both $b$ and $c$. Some properties of such elements are obtained in the context of modular lattices. We give a necessary condition for the direct sum of Goldie extending elements to be Goldie extending. Some characterizations of a decomposition of a Goldie extending element in such a lattice are given. The concepts of an $a$-injective and an $a$-ejective element are introduced in a lattice and their properties related to extending elements are discussed.},
author = {Nimbhorkar, Shriram K., Shroff, Rupal C.},
journal = {Mathematica Bohemica},
keywords = {modular lattice; Goldie extending element},
language = {eng},
number = {2},
pages = {163-180},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Goldie extending elements in modular lattices},
url = {http://eudml.org/doc/288109},
volume = {142},
year = {2017},
}
TY - JOUR
AU - Nimbhorkar, Shriram K.
AU - Shroff, Rupal C.
TI - Goldie extending elements in modular lattices
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 2
SP - 163
EP - 180
AB - The concept of a Goldie extending module is generalized to a Goldie extending element in a lattice. An element $a$ of a lattice $L$ with $0$ is said to be a Goldie extending element if and only if for every $b \le a$ there exists a direct summand $c$ of $a$ such that $b \wedge c$ is essential in both $b$ and $c$. Some properties of such elements are obtained in the context of modular lattices. We give a necessary condition for the direct sum of Goldie extending elements to be Goldie extending. Some characterizations of a decomposition of a Goldie extending element in such a lattice are given. The concepts of an $a$-injective and an $a$-ejective element are introduced in a lattice and their properties related to extending elements are discussed.
LA - eng
KW - modular lattice; Goldie extending element
UR - http://eudml.org/doc/288109
ER -
References
top- Akalan, E., Birkenmeier, G. F., Tercan, A., 10.1080/00927872.2011.651766, Commun. Algebra 41 (2013), page 2005. Original article ibid. (2009), 663-683 and first correction in (2010), 4747-4748. (2013) Zbl1278.16005MR3062842DOI10.1080/00927872.2011.651766
- Călugăreanu, G., 10.1007/978-94-015-9588-9, Kluwer Texts in the Mathematical Sciences 22. Kluwer Academic Publishers, Dordrecht (2000). (2000) Zbl0959.06001MR1782739DOI10.1007/978-94-015-9588-9
- Chatters, A. W., Hajarnavis, C. R., 10.1093/qmath/28.1.61, Q. J. Math., Oxf. (2) 28 (1977), 61-80. (1977) Zbl0342.16023MR0437595DOI10.1093/qmath/28.1.61
- Crawley, P., Dilworth, R. P., Algebraic Theory of Lattices, Prentice-Hall, Englewood Cliffs, New Jersey (1973). (1973) Zbl0494.06001
- Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R., Extending Modules, Pitman Research Notes in Mathematics Series 313. Longman Scientific & Technical, Harlow (1994). (1994) Zbl0841.16001MR1312366
- Er, N., 10.1090/S0002-9939-09-09807-4, Proc. Am. Math. Soc. 137 (2009), 2265-2271. (2009) Zbl1176.16006MR2495259DOI10.1090/S0002-9939-09-09807-4
- Grätzer, G., General Lattice Theory, Birkhäuser, Basel (1998). (1998) Zbl0909.06002MR1670580
- Grzeszczuk, P., Puczyłowski, E. R., 10.1016/0022-4049(84)90075-6, J. Pure Appl. Algebra 31 (1984), 47-54. (1984) Zbl0528.16010MR0738204DOI10.1016/0022-4049(84)90075-6
- Harmanci, A., Smith, P. F., Finite direct sums of CS-modules, Houston J. Math. 19 (1993), 523-532. (1993) Zbl0802.16006MR1251607
- Kamal, M. A., Sayed, A., On generalized extending modules, Acta Math. Univ. Comen., New Ser. 76 (2007), 193-200. (2007) Zbl1156.16005MR2385032
- Keskin, D., An approach to extending and lifting modules by modular lattices, Indian J. Pure Appl. Math. 33 (2002), 81-86. (2002) Zbl0998.16004MR1879786
- Lam, T. Y., 10.1007/978-1-4612-0525-8, Graduate Texts in Mathematics 189. Springer, New York (1999). (1999) Zbl0911.16001MR1653294DOI10.1007/978-1-4612-0525-8
- Szász, G., Introduction to Lattice Theory, Academic Press, New York; Akadémiai Kiadó, Budapest (1963). (1963) Zbl0126.03703MR0166118
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.