Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On a general difference Galois theory I

Shuji Morikawa — 2009

Annales de l’institut Fourier

We know well difference Picard-Vessiot theory, Galois theory of linear difference equations. We propose a general Galois theory of difference equations that generalizes Picard-Vessiot theory. For every difference field extension of characteristic 0 , we attach its Galois group, which is a group of coordinate transformation.

On a general difference Galois theory II

Shuji MorikawaHiroshi Umemura — 2009

Annales de l’institut Fourier

We apply the General Galois Theory of difference equations introduced in the first part to concrete examples. The General Galois Theory allows us to define a discrete dynamical system being infinitesimally solvable, which is a finer notion than being integrable. We determine all the infinitesimally solvable discrete dynamical systems on the compact Riemann surfaces.

Page 1

Download Results (CSV)