The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On a problem of Sidon for polynomials over finite fields

Wentang KuoShuntaro Yamagishi — 2016

Acta Arithmetica

Let ω be a sequence of positive integers. Given a positive integer n, we define rₙ(ω) = |(a,b) ∈ ℕ × ℕ : a,b ∈ ω, a+b = n, 0 < a < b|. S. Sidon conjectured that there exists a sequence ω such that rₙ(ω) > 0 for all n sufficiently large and, for all ϵ > 0, l i m n r ( ω ) / n ϵ = 0 . P. Erdős proved this conjecture by showing the existence of a sequence ω of positive integers such that log n ≪ rₙ(ω) ≪ log n. In this paper, we prove an analogue of this conjecture in q [ T ] , where q is a finite field of q elements....

Sidon basis in polynomial rings over finite fields

Wentang KuoShuntaro Yamagishi — 2021

Czechoslovak Mathematical Journal

Let 𝔽 q [ t ] denote the polynomial ring over 𝔽 q , the finite field of q elements. Suppose the characteristic of 𝔽 q is not 2 or 3 . We prove that there exist infinitely many N such that the set { f 𝔽 q [ t ] : deg f < N } contains a Sidon set which is an additive basis of order 3 .

A generalization of a theorem of Erdős-Rényi to m-fold sums and differences

Kathryn E. HareShuntaro Yamagishi — 2014

Acta Arithmetica

Let m ≥ 2 be a positive integer. Given a set E(ω) ⊆ ℕ we define r N ( m ) ( ω ) to be the number of ways to represent N ∈ ℤ as a combination of sums and differences of m distinct elements of E(ω). In this paper, we prove the existence of a “thick” set E(ω) and a positive constant K such that r N ( m ) ( ω ) < K for all N ∈ ℤ. This is a generalization of a known theorem by Erdős and Rényi. We also apply our results to harmonic analysis, where we prove the existence of certain thin sets.

Page 1

Download Results (CSV)