The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
It is shown that for any Artinian modules , is the greatest integer such that .
In this paper the concept of the second submodule (the dual notion of prime submodule) is introduced.
Let be a commutative Noetherian local ring. We establish some bounds for the sequence of Bass numbers and their dual for a finitely generated -module.
Let be a commutative Noetherian ring. It is shown that the finitely generated -module with finite Gorenstein dimension is reflexive if and only if is reflexive for with , and for with . This gives a generalization of Serre and Samuel’s results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for we give a characterization of -Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown...
Download Results (CSV)