Let be a Schrödinger operator on with and satisfying . Assume that is a function such that is an Orlicz function, (the class of uniformly Muckenhoupt weights). Let be an -harmonic function on with , where and are positive constants. In this article, the author proves that the mapping is an isomorphism from the Musielak-Orlicz-Hardy space associated with , , to the Musielak-Orlicz-Hardy space under some assumptions on . As applications, the author further obtains the...
Let Φ be a concave function on (0,∞) of strictly critical lower type index and (the class of local weights introduced by V. S. Rychkov). We introduce the weighted local Orlicz-Hardy space via the local grand maximal function. Let for all t ∈ (0,∞). We also introduce the BMO-type space and establish the duality between and . Characterizations of , including the atomic characterization, the local vertical and the local nontangential maximal function characterizations, are presented....
Let X be a metric space with doubling measure and L a one-to-one operator of type ω having a bounded H∞ -functional calculus in L2(X) satisfying the reinforced (pL; qL) off-diagonal estimates on balls, where pL ∊ [1; 2) and qL ∊ (2;∞]. Let φ : X × [0;∞) → [0;∞) be a function such that φ (x;·) is an Orlicz function, φ(·;t) ∊ A∞(X) (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index l(φ) ∊ (0;1] and φ(·; t) satisfies the uniformly reverse Hölder inequality of order...
Download Results (CSV)