Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators

Sibei Yang

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 3, page 747-779
  • ISSN: 0011-4642

Abstract

top
Let L : = - Δ + V be a Schrödinger operator on n with n 3 and V 0 satisfying Δ - 1 V L ( n ) . Assume that ϕ : n × [ 0 , ) [ 0 , ) is a function such that ϕ ( x , · ) is an Orlicz function, ϕ ( · , t ) 𝔸 ( n ) (the class of uniformly Muckenhoupt weights). Let w be an L -harmonic function on n with 0 < C 1 w C 2 , where C 1 and C 2 are positive constants. In this article, the author proves that the mapping H ϕ , L ( n ) f w f H ϕ ( n ) is an isomorphism from the Musielak-Orlicz-Hardy space associated with L , H ϕ , L ( n ) , to the Musielak-Orlicz-Hardy space H ϕ ( n ) under some assumptions on ϕ . As applications, the author further obtains the atomic and molecular characterizations of the space H ϕ , L ( n ) associated with w , and proves that the operator ( - Δ ) - 1 / 2 L 1 / 2 is an isomorphism of the spaces H ϕ , L ( n ) and H ϕ ( n ) . All these results are new even when ϕ ( x , t ) : = t p , for all x n and t [ 0 , ) , with p ( n / ( n + μ 0 ) , 1 ) and some μ 0 ( 0 , 1 ] .

How to cite

top

Yang, Sibei. "Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators." Czechoslovak Mathematical Journal 65.3 (2015): 747-779. <http://eudml.org/doc/271829>.

@article{Yang2015,
abstract = {Let $L:=-\Delta +V$ be a Schrödinger operator on $\mathbb \{R\}^n$ with $n\ge 3$ and $V\ge 0$ satisfying $\Delta ^\{-1\} V\in L^\infty (\mathbb \{R\}^n)$. Assume that $\varphi \colon \mathbb \{R\}^n\times [0,\infty )\rightarrow [0,\infty )$ is a function such that $\varphi (x,\cdot )$ is an Orlicz function, $\varphi (\cdot ,t)\in \{\mathbb \{A\}\}_\{\infty \}(\mathbb \{R\}^n)$ (the class of uniformly Muckenhoupt weights). Let $w$ be an $L$-harmonic function on $\mathbb \{R\}^n$ with $0<C_1\le w\le C_2$, where $C_1$ and $C_2$ are positive constants. In this article, the author proves that the mapping $H_\{\varphi ,L\}(\mathbb \{R\}^n)\ni f\mapsto wf\in H_\varphi (\mathbb \{R\}^n)$ is an isomorphism from the Musielak-Orlicz-Hardy space associated with $L$, $H_\{\varphi ,L\}(\mathbb \{R\}^n)$, to the Musielak-Orlicz-Hardy space $H_\{\varphi \}(\mathbb \{R\}^n)$ under some assumptions on $\varphi $. As applications, the author further obtains the atomic and molecular characterizations of the space $H_\{\varphi ,L\}(\mathbb \{R\}^n)$ associated with $w$, and proves that the operator $(-\Delta )^\{-1/2\}L^\{1/2\}$ is an isomorphism of the spaces $H_\{\varphi ,L\}(\mathbb \{R\}^n)$ and $H_\{\varphi \}(\mathbb \{R\}^n)$. All these results are new even when $\varphi (x,t):=t^p$, for all $x\in \mathbb \{R\}^n$ and $t\in [0,\infty )$, with $p\in (\{n\}/\{(n+\mu _0)\},1)$ and some $\mu _0\in (0,1]$.},
author = {Yang, Sibei},
journal = {Czechoslovak Mathematical Journal},
keywords = {Musielak-Orlicz-Hardy space; Schrödinger operator; $L$-harmonic function; isomorphism of Hardy space; atom; molecule},
language = {eng},
number = {3},
pages = {747-779},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators},
url = {http://eudml.org/doc/271829},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Yang, Sibei
TI - Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 747
EP - 779
AB - Let $L:=-\Delta +V$ be a Schrödinger operator on $\mathbb {R}^n$ with $n\ge 3$ and $V\ge 0$ satisfying $\Delta ^{-1} V\in L^\infty (\mathbb {R}^n)$. Assume that $\varphi \colon \mathbb {R}^n\times [0,\infty )\rightarrow [0,\infty )$ is a function such that $\varphi (x,\cdot )$ is an Orlicz function, $\varphi (\cdot ,t)\in {\mathbb {A}}_{\infty }(\mathbb {R}^n)$ (the class of uniformly Muckenhoupt weights). Let $w$ be an $L$-harmonic function on $\mathbb {R}^n$ with $0<C_1\le w\le C_2$, where $C_1$ and $C_2$ are positive constants. In this article, the author proves that the mapping $H_{\varphi ,L}(\mathbb {R}^n)\ni f\mapsto wf\in H_\varphi (\mathbb {R}^n)$ is an isomorphism from the Musielak-Orlicz-Hardy space associated with $L$, $H_{\varphi ,L}(\mathbb {R}^n)$, to the Musielak-Orlicz-Hardy space $H_{\varphi }(\mathbb {R}^n)$ under some assumptions on $\varphi $. As applications, the author further obtains the atomic and molecular characterizations of the space $H_{\varphi ,L}(\mathbb {R}^n)$ associated with $w$, and proves that the operator $(-\Delta )^{-1/2}L^{1/2}$ is an isomorphism of the spaces $H_{\varphi ,L}(\mathbb {R}^n)$ and $H_{\varphi }(\mathbb {R}^n)$. All these results are new even when $\varphi (x,t):=t^p$, for all $x\in \mathbb {R}^n$ and $t\in [0,\infty )$, with $p\in ({n}/{(n+\mu _0)},1)$ and some $\mu _0\in (0,1]$.
LA - eng
KW - Musielak-Orlicz-Hardy space; Schrödinger operator; $L$-harmonic function; isomorphism of Hardy space; atom; molecule
UR - http://eudml.org/doc/271829
ER -

References

top
  1. Bonami, A., Grellier, S., Ky, L. D., 10.1016/j.matpur.2011.06.002, J. Math. Pures Appl. (9) 97 (2012), 230-241 French summary. (2012) MR2887623DOI10.1016/j.matpur.2011.06.002
  2. Bonami, A., Iwaniec, T., Jones, P., Zinsmeister, M., On the product of functions in BMO and H 1 , Ann. Inst. Fourier 57 (2007), 1405-1439. (2007) Zbl1132.42010MR2364134
  3. Bui, T. A., Cao, J., Ky, L. D., Yang, D., Yang, S., Musielak-Orlicz-Hardy spaces associated with operators satisfying reinforced off-diagonal estimates, Anal. Geom. Metr. Spaces (electronic only) 1 (2013), 69-129. (2013) Zbl1261.42034MR3108869
  4. Cao, J., Chang, D.-C., Yang, D., Yang, S., 10.3934/cpaa.2014.13.1435, Commun. Pure Appl. Anal. 13 (2014), 1435-1463. (2014) MR3177739DOI10.3934/cpaa.2014.13.1435
  5. Duong, X. T., Yan, L., 10.1090/S0894-0347-05-00496-0, J. Am. Math. Soc. 18 (2005), 943-973. (2005) Zbl1078.42013MR2163867DOI10.1090/S0894-0347-05-00496-0
  6. Dziubański, J., Zienkiewicz, J., 10.1007/s11118-014-9400-2, Potential Anal. 41 (2014), 917-930. (2014) Zbl1301.42039MR3264827DOI10.1007/s11118-014-9400-2
  7. Dziubański, J., Zienkiewicz, J., 10.1007/s00041-013-9262-9, J. Fourier Anal. Appl. 19 (2013), 447-456. (2013) Zbl1305.42025MR3048584DOI10.1007/s00041-013-9262-9
  8. Fefferman, C. L., Stein, E. M., 10.1007/BF02392215, Acta Math. 129 (1972), 137-193. (1972) MR0447953DOI10.1007/BF02392215
  9. García-Cuerva, J., Francia, J. L. Rubio de, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116 North-Holland, Amsterdam (1985). (1985) MR0807149
  10. Grafakos, L., Modern Fourier Analysis, Graduate Texts in Mathematics 250 Springer, New York (2009). (2009) Zbl1158.42001MR2463316
  11. Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L., Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Am. Math. Soc. 1007 (2011), 78 pages. (2011) Zbl1232.42018MR2868142
  12. Hofmann, S., Mayboroda, S., 10.1007/s00208-008-0295-3, Math. Ann. 344 (2009), 37-116. (2009) Zbl1162.42012MR2481054DOI10.1007/s00208-008-0295-3
  13. Hofmann, S., Mayboroda, S., McIntosh, A., Second order elliptic operators with complex bounded measurable coefficients in L p , Sobolev and Hardy spaces, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 723-800 French summary. (2011) Zbl1243.47072MR2931518
  14. Hou, S., Yang, D., Yang, S., Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications, Commun. Contemp. Math. 15 (2013), Article ID1350029, 37 pages. (2013) Zbl1285.42020MR3139410
  15. Janson, S., 10.1215/S0012-7094-80-04755-9, Duke Math. J. 47 (1980), 959-982. (1980) Zbl0453.46027MR0596123DOI10.1215/S0012-7094-80-04755-9
  16. Jiang, R., Yang, D., 10.1142/S0219199711004221, Commun. Contemp. Math. 13 (2011), 331-373. (2011) Zbl1221.42042MR2794490DOI10.1142/S0219199711004221
  17. Jiang, R., Yang, D., 10.1016/j.jfa.2009.10.018, J. Funct. Anal. 258 (2010), 1167-1224. (2010) Zbl1205.46014MR2565837DOI10.1016/j.jfa.2009.10.018
  18. Jiang, R., Yang, D., Yang, D., 10.1515/form.2011.067, Forum Math. 24 (2012), 471-494. (2012) Zbl1248.42023MR2926631DOI10.1515/form.2011.067
  19. Ky, L. D., Endpoint estimates for commutators of singular integrals related to Schrödinger operators, To appear in Rev. Mat. Iberoam. 
  20. Ky, L. D., 10.1007/s00020-013-2111-z, Integral Equations Oper. Theory 78 (2014), 115-150. (2014) Zbl1284.42073MR3147406DOI10.1007/s00020-013-2111-z
  21. Ky, L. D., Bilinear decompositions and commutators of singular integral operators, Trans. Am. Math. Soc. 365 (2013), 2931-2958. (2013) Zbl1272.42010MR3034454
  22. Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics 1034 Springer, Berlin (1983). (1983) Zbl0557.46020MR0724434
  23. Ouhabaz, E. M., Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005). (2005) Zbl1082.35003MR2124040
  24. Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Pure and Applied Mathematics 146 Marcel Dekker, New York (1991). (1991) Zbl0724.46032MR1113700
  25. Semenov, Y. A., 10.1155/S107379289700038X, Int. Math. Res. Not. 12 (1997), 573-593. (1997) Zbl0905.47031MR1456565DOI10.1155/S107379289700038X
  26. Simon, B., Functional Integration and Quantum Physics, AMS Chelsea Publishing, Providence (2005). (2005) Zbl1061.28010MR2105995
  27. Strömberg, J.-O., 10.1512/iumj.1979.28.28037, Indiana Univ. Math. J. 28 (1979), 511-544. (1979) MR0529683DOI10.1512/iumj.1979.28.28037
  28. Strömberg, J.-O., Torchinsky, A., Weighted Hardy Spaces, Lecture Notes in Mathematics 1381 Springer, Berlin (1989). (1989) Zbl0676.42021MR1011673
  29. Yan, L., 10.1090/S0002-9947-08-04476-0, Trans. Am. Math. Soc. 360 (2008), 4383-4408. (2008) Zbl1273.42022MR2395177DOI10.1090/S0002-9947-08-04476-0
  30. Yang, D., Yang, S., 10.1007/s12220-012-9344-y, J. Geom. Anal. 24 (2014), 495-570. (2014) Zbl1302.42033MR3145932DOI10.1007/s12220-012-9344-y
  31. Yang, D., Yang, S., 10.1007/s11425-012-4377-z, Sci. China Math. 55 (2012), 1677-1720. (2012) Zbl1266.42055MR2955251DOI10.1007/s11425-012-4377-z

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.