Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 3, page 747-779
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYang, Sibei. "Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators." Czechoslovak Mathematical Journal 65.3 (2015): 747-779. <http://eudml.org/doc/271829>.
@article{Yang2015,
abstract = {Let $L:=-\Delta +V$ be a Schrödinger operator on $\mathbb \{R\}^n$ with $n\ge 3$ and $V\ge 0$ satisfying $\Delta ^\{-1\} V\in L^\infty (\mathbb \{R\}^n)$. Assume that $\varphi \colon \mathbb \{R\}^n\times [0,\infty )\rightarrow [0,\infty )$ is a function such that $\varphi (x,\cdot )$ is an Orlicz function, $\varphi (\cdot ,t)\in \{\mathbb \{A\}\}_\{\infty \}(\mathbb \{R\}^n)$ (the class of uniformly Muckenhoupt weights). Let $w$ be an $L$-harmonic function on $\mathbb \{R\}^n$ with $0<C_1\le w\le C_2$, where $C_1$ and $C_2$ are positive constants. In this article, the author proves that the mapping $H_\{\varphi ,L\}(\mathbb \{R\}^n)\ni f\mapsto wf\in H_\varphi (\mathbb \{R\}^n)$ is an isomorphism from the Musielak-Orlicz-Hardy space associated with $L$, $H_\{\varphi ,L\}(\mathbb \{R\}^n)$, to the Musielak-Orlicz-Hardy space $H_\{\varphi \}(\mathbb \{R\}^n)$ under some assumptions on $\varphi $. As applications, the author further obtains the atomic and molecular characterizations of the space $H_\{\varphi ,L\}(\mathbb \{R\}^n)$ associated with $w$, and proves that the operator $(-\Delta )^\{-1/2\}L^\{1/2\}$ is an isomorphism of the spaces $H_\{\varphi ,L\}(\mathbb \{R\}^n)$ and $H_\{\varphi \}(\mathbb \{R\}^n)$. All these results are new even when $\varphi (x,t):=t^p$, for all $x\in \mathbb \{R\}^n$ and $t\in [0,\infty )$, with $p\in (\{n\}/\{(n+\mu _0)\},1)$ and some $\mu _0\in (0,1]$.},
author = {Yang, Sibei},
journal = {Czechoslovak Mathematical Journal},
keywords = {Musielak-Orlicz-Hardy space; Schrödinger operator; $L$-harmonic function; isomorphism of Hardy space; atom; molecule},
language = {eng},
number = {3},
pages = {747-779},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators},
url = {http://eudml.org/doc/271829},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Yang, Sibei
TI - Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 3
SP - 747
EP - 779
AB - Let $L:=-\Delta +V$ be a Schrödinger operator on $\mathbb {R}^n$ with $n\ge 3$ and $V\ge 0$ satisfying $\Delta ^{-1} V\in L^\infty (\mathbb {R}^n)$. Assume that $\varphi \colon \mathbb {R}^n\times [0,\infty )\rightarrow [0,\infty )$ is a function such that $\varphi (x,\cdot )$ is an Orlicz function, $\varphi (\cdot ,t)\in {\mathbb {A}}_{\infty }(\mathbb {R}^n)$ (the class of uniformly Muckenhoupt weights). Let $w$ be an $L$-harmonic function on $\mathbb {R}^n$ with $0<C_1\le w\le C_2$, where $C_1$ and $C_2$ are positive constants. In this article, the author proves that the mapping $H_{\varphi ,L}(\mathbb {R}^n)\ni f\mapsto wf\in H_\varphi (\mathbb {R}^n)$ is an isomorphism from the Musielak-Orlicz-Hardy space associated with $L$, $H_{\varphi ,L}(\mathbb {R}^n)$, to the Musielak-Orlicz-Hardy space $H_{\varphi }(\mathbb {R}^n)$ under some assumptions on $\varphi $. As applications, the author further obtains the atomic and molecular characterizations of the space $H_{\varphi ,L}(\mathbb {R}^n)$ associated with $w$, and proves that the operator $(-\Delta )^{-1/2}L^{1/2}$ is an isomorphism of the spaces $H_{\varphi ,L}(\mathbb {R}^n)$ and $H_{\varphi }(\mathbb {R}^n)$. All these results are new even when $\varphi (x,t):=t^p$, for all $x\in \mathbb {R}^n$ and $t\in [0,\infty )$, with $p\in ({n}/{(n+\mu _0)},1)$ and some $\mu _0\in (0,1]$.
LA - eng
KW - Musielak-Orlicz-Hardy space; Schrödinger operator; $L$-harmonic function; isomorphism of Hardy space; atom; molecule
UR - http://eudml.org/doc/271829
ER -
References
top- Bonami, A., Grellier, S., Ky, L. D., 10.1016/j.matpur.2011.06.002, J. Math. Pures Appl. (9) 97 (2012), 230-241 French summary. (2012) MR2887623DOI10.1016/j.matpur.2011.06.002
- Bonami, A., Iwaniec, T., Jones, P., Zinsmeister, M., On the product of functions in BMO and , Ann. Inst. Fourier 57 (2007), 1405-1439. (2007) Zbl1132.42010MR2364134
- Bui, T. A., Cao, J., Ky, L. D., Yang, D., Yang, S., 10.2478/agms-2012-0006, Anal. Geom. Metr. Spaces (electronic only) 1 (2013), 69-129. (2013) Zbl1261.42034MR3108869DOI10.2478/agms-2012-0006
- Cao, J., Chang, D.-C., Yang, D., Yang, S., 10.3934/cpaa.2014.13.1435, Commun. Pure Appl. Anal. 13 (2014), 1435-1463. (2014) MR3177739DOI10.3934/cpaa.2014.13.1435
- Duong, X. T., Yan, L., 10.1090/S0894-0347-05-00496-0, J. Am. Math. Soc. 18 (2005), 943-973. (2005) Zbl1078.42013MR2163867DOI10.1090/S0894-0347-05-00496-0
- Dziubański, J., Zienkiewicz, J., 10.1007/s11118-014-9400-2, Potential Anal. 41 (2014), 917-930. (2014) Zbl1301.42039MR3264827DOI10.1007/s11118-014-9400-2
- Dziubański, J., Zienkiewicz, J., 10.1007/s00041-013-9262-9, J. Fourier Anal. Appl. 19 (2013), 447-456. (2013) Zbl1305.42025MR3048584DOI10.1007/s00041-013-9262-9
- Fefferman, C. L., Stein, E. M., 10.1007/BF02392215, Acta Math. 129 (1972), 137-193. (1972) MR0447953DOI10.1007/BF02392215
- García-Cuerva, J., Francia, J. L. Rubio de, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116 North-Holland, Amsterdam (1985). (1985) MR0807149
- Grafakos, L., Modern Fourier Analysis, Graduate Texts in Mathematics 250 Springer, New York (2009). (2009) Zbl1158.42001MR2463316
- Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L., Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Am. Math. Soc. 1007 (2011), 78 pages. (2011) Zbl1232.42018MR2868142
- Hofmann, S., Mayboroda, S., 10.1007/s00208-008-0295-3, Math. Ann. 344 (2009), 37-116. (2009) Zbl1162.42012MR2481054DOI10.1007/s00208-008-0295-3
- Hofmann, S., Mayboroda, S., McIntosh, A., 10.24033/asens.2154, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 723-800 French summary. (2011) Zbl1243.47072MR2931518DOI10.24033/asens.2154
- Hou, S., Yang, D., Yang, S., Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications, Commun. Contemp. Math. 15 (2013), Article ID1350029, 37 pages. (2013) Zbl1285.42020MR3139410
- Janson, S., 10.1215/S0012-7094-80-04755-9, Duke Math. J. 47 (1980), 959-982. (1980) Zbl0453.46027MR0596123DOI10.1215/S0012-7094-80-04755-9
- Jiang, R., Yang, D., 10.1142/S0219199711004221, Commun. Contemp. Math. 13 (2011), 331-373. (2011) Zbl1221.42042MR2794490DOI10.1142/S0219199711004221
- Jiang, R., Yang, D., 10.1016/j.jfa.2009.10.018, J. Funct. Anal. 258 (2010), 1167-1224. (2010) Zbl1205.46014MR2565837DOI10.1016/j.jfa.2009.10.018
- Jiang, R., Yang, D., Yang, D., 10.1515/form.2011.067, Forum Math. 24 (2012), 471-494. (2012) Zbl1248.42023MR2926631DOI10.1515/form.2011.067
- Ky, L. D., Endpoint estimates for commutators of singular integrals related to Schrödinger operators, To appear in Rev. Mat. Iberoam.
- Ky, L. D., 10.1007/s00020-013-2111-z, Integral Equations Oper. Theory 78 (2014), 115-150. (2014) Zbl1284.42073MR3147406DOI10.1007/s00020-013-2111-z
- Ky, L. D., Bilinear decompositions and commutators of singular integral operators, Trans. Am. Math. Soc. 365 (2013), 2931-2958. (2013) Zbl1272.42010MR3034454
- Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics 1034 Springer, Berlin (1983). (1983) Zbl0557.46020MR0724434
- Ouhabaz, E. M., Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series 31 Princeton University Press, Princeton (2005). (2005) Zbl1082.35003MR2124040
- Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Pure and Applied Mathematics 146 Marcel Dekker, New York (1991). (1991) Zbl0724.46032MR1113700
- Semenov, Y. A., 10.1155/S107379289700038X, Int. Math. Res. Not. 12 (1997), 573-593. (1997) Zbl0905.47031MR1456565DOI10.1155/S107379289700038X
- Simon, B., Functional Integration and Quantum Physics, AMS Chelsea Publishing, Providence (2005). (2005) Zbl1061.28010MR2105995
- Strömberg, J.-O., 10.1512/iumj.1979.28.28037, Indiana Univ. Math. J. 28 (1979), 511-544. (1979) MR0529683DOI10.1512/iumj.1979.28.28037
- Strömberg, J.-O., Torchinsky, A., 10.1007/BFb0091160, Lecture Notes in Mathematics 1381 Springer, Berlin (1989). (1989) Zbl0676.42021MR1011673DOI10.1007/BFb0091160
- Yan, L., 10.1090/S0002-9947-08-04476-0, Trans. Am. Math. Soc. 360 (2008), 4383-4408. (2008) Zbl1273.42022MR2395177DOI10.1090/S0002-9947-08-04476-0
- Yang, D., Yang, S., 10.1007/s12220-012-9344-y, J. Geom. Anal. 24 (2014), 495-570. (2014) Zbl1302.42033MR3145932DOI10.1007/s12220-012-9344-y
- Yang, D., Yang, S., 10.1007/s11425-012-4377-z, Sci. China Math. 55 (2012), 1677-1720. (2012) Zbl1266.42055MR2955251DOI10.1007/s11425-012-4377-z
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.