The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

Additional note on partial regularity of weak solutions of the Navier-Stokes equations in the class L ( 0 , T , L 3 ( Ω ) 3 )

Zdeněk Skalák — 2003

Applications of Mathematics

We present a simplified proof of a theorem proved recently concerning the number of singular points of weak solutions to the Navier-Stokes equations. If a weak solution 𝐮 belongs to L ( 0 , T , L 3 ( Ω ) 3 ) , then the set of all possible singular points of 𝐮 in Ω is at most finite at every time t 0 ( 0 , T ) .

A continuity property for the inverse of Mañé's projection

Zdeněk Skalák — 1998

Applications of Mathematics

Let X be a compact subset of a separable Hilbert space H with finite fractal dimension d F ( X ) , and P 0 an orthogonal projection in H of rank greater than or equal to 2 d F ( X ) + 1 . For every δ > 0 , there exists an orthogonal projection P in H of the same rank as P 0 , which is injective when restricted to X and such that P - P 0 < δ . This result follows from Mañé’s paper. Thus the inverse ( P | X ) - 1 of the restricted mapping P | X X P X is well defined. It is natural to ask whether there exists a universal modulus of continuity for the inverse of Mañé’s...

Conditions of Prodi-Serrin's type for local regularity of suitable weak solutions to the Navier-Stokes equations

Zdeněk Skalák — 2002

Commentationes Mathematicae Universitatis Carolinae

In the context of suitable weak solutions to the Navier-Stokes equations we present local conditions of Prodi-Serrin’s type on velocity 𝐯 and pressure p under which ( 𝐱 0 , t 0 ) Ω × ( 0 , T ) is a regular point of 𝐯 . The conditions are imposed exclusively on the outside of a sufficiently narrow space-time paraboloid with the vertex ( 𝐱 0 , t 0 ) and the axis parallel with the t -axis.

An existence theorem for the Boussinesq equations with non-Dirichlet boundary conditions

Zdeněk SkalákPetr Kučera — 2000

Applications of Mathematics

The evolution Boussinesq equations describe the evolution of the temperature and velocity fields of viscous incompressible Newtonian fluids. Very often, they are a reasonable model to render relevant phenomena of flows in which the thermal effects play an essential role. In the paper we prescribe non-Dirichlet boundary conditions on a part of the boundary and prove the existence and uniqueness of solutions to the Boussinesq equations on a (short) time interval. The length of the time interval depends...

Page 1

Download Results (CSV)