Projective varieties invariant by one-dimensional foliations.
We consider the problem of extending the result of J.-P. Jouanolou on the density of singular holomorphic foliations on without algebraic solutions to the case of foliations by curves on . We give an example of a foliation on with no invariant algebraic set (curve or surface) and prove that a dense set of foliations admits no invariant algebraic set.
We will consider codimension one holomorphic foliations represented by sections , and having a compact Kupka component . We show that the Chern classes of the tangent bundle of behave like Chern classes of a complete intersection 0 and, as a corollary we prove that is a complete intersection in some cases.
Page 1