Chern numbers of a Kupka component
Omegar Calvo-Andrade; Marcio G. Soares
Annales de l'institut Fourier (1994)
- Volume: 44, Issue: 4, page 1219-1236
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCalvo-Andrade, Omegar, and Soares, Marcio G.. "Chern numbers of a Kupka component." Annales de l'institut Fourier 44.4 (1994): 1219-1236. <http://eudml.org/doc/75094>.
@article{Calvo1994,
abstract = {We will consider codimension one holomorphic foliations represented by sections $\omega \in H^0(\{\Bbb P\}^n, \Omega ^1(k))$, and having a compact Kupka component $K$. We show that the Chern classes of the tangent bundle of $K$ behave like Chern classes of a complete intersection 0 and, as a corollary we prove that $K$ is a complete intersection in some cases.},
author = {Calvo-Andrade, Omegar, Soares, Marcio G.},
journal = {Annales de l'institut Fourier},
keywords = {Chern class; residues; Kupka set; holomorphic foliations; complete intersection},
language = {eng},
number = {4},
pages = {1219-1236},
publisher = {Association des Annales de l'Institut Fourier},
title = {Chern numbers of a Kupka component},
url = {http://eudml.org/doc/75094},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Calvo-Andrade, Omegar
AU - Soares, Marcio G.
TI - Chern numbers of a Kupka component
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 4
SP - 1219
EP - 1236
AB - We will consider codimension one holomorphic foliations represented by sections $\omega \in H^0({\Bbb P}^n, \Omega ^1(k))$, and having a compact Kupka component $K$. We show that the Chern classes of the tangent bundle of $K$ behave like Chern classes of a complete intersection 0 and, as a corollary we prove that $K$ is a complete intersection in some cases.
LA - eng
KW - Chern class; residues; Kupka set; holomorphic foliations; complete intersection
UR - http://eudml.org/doc/75094
ER -
References
top- [B] W. BARTH, Some properties of stable rank-2 vector bundles on Pn, Math. Ann., 226 (1977), 125-150. Zbl0332.32021MR55 #2905
- [BB] P. BAUM, R. BOTT, Singularities of holomorphic foliations, Journal on Differential Geometry, 7 (1972), 279-342. Zbl0268.57011MR51 #14092
- [BCh] E. BALLICO, L. CHIANTINI, On smooth subcanonical varieties of codimension 2 in Pn n ≥ 4, Annali di Matematica, (1983), 99-117. Zbl0549.14015MR86d:14047
- [CL] D. CERVEAU, A. LINS, Codimension one holomorphic foliations with Kupka components. Zbl0823.32014
- [GS] H. GRAUERT, M. SCHNEIDER, Komplexe Unterräume und holomorphe Vektorraumbündel von Rang zwei, Math. Ann., 230 (1977), 75-90. Zbl0412.32014MR58 #1279
- [GH] Ph. GRIFFITHS, J. HARRIS, Principles of Algebraic Geometry, Pure & Applied Math., Wiley Intersc., New York, 1978. Zbl0408.14001
- [G] R. GODEMENT, Topologie algébrique et théorie de faisceaux, Actualités Scientifiques et Industrielles, Herman, Paris, 1952.
- [GML] X. GÓMEZ-MONT, N. LINS, A structural stability of foliations with a meromorphic first integral, Topology, 30 (1990), 315-334. Zbl0735.57014
- [H] R. HARTSHORNE, Varieties of small codimension in projective space, Bull. of the AMS, 80 (1974), 1017-1032. Zbl0304.14005MR52 #5688
- [H1] R. HARTSHORNE, Stable vector bundles of rank 2 on P3, Math. Ann., 238 (1978), 229-280. Zbl0411.14002MR80c:14011
- [HS] A. HOLME, M. SCHNEIDER, A computer aided approach to codimension 2 subvarieties of Pn, n ≥ 6, J. Reine Angew. Math., 357 (1985), 205-220. Zbl0581.14035MR86m:14036
- [M] A. MEDEIROS, Structural stability of integrable differential forms, Geometry and Topology, LNM, Springer, New York, 1977, pp. 395-428. Zbl0363.58007MR56 #9561
- [OSS] Ch. OKONEK, M. SCHNEIDER, H. SPINDLER, Vector Bundles on Complex Projective spaces, Progress in Math., 3, Birkhauser, Basel, 1978.
- [R] Z. RAN, On projective varieties of codimension 2, Invent. Math., 73 (1983), 333-336. Zbl0521.14018MR85g:14063
Citations in EuDML Documents
top- Edoardo Ballico, A splitting theorem for the Kupka component of a foliation of . Addendum to a paper by O. Calvo-Andrade and N. Soares
- Edoardo Ballico, A splitting theorem for the Kupka component of a foliation of . Addendum to an addendum to a paper by Calvo-Andrade and Soares
- O. Calvo-Andrade, Positivity, vanishing theorems and rigidity of Codimension one Holomorphic Foliations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.