On algebraic sets invariant by one-dimensional foliations on
Annales de l'institut Fourier (1993)
- Volume: 43, Issue: 1, page 143-162
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSoares, Marcio G.. "On algebraic sets invariant by one-dimensional foliations on ${\bf C}P(3)$." Annales de l'institut Fourier 43.1 (1993): 143-162. <http://eudml.org/doc/74985>.
@article{Soares1993,
abstract = {We consider the problem of extending the result of J.-P. Jouanolou on the density of singular holomorphic foliations on $\{\bf C\} P(2)$ without algebraic solutions to the case of foliations by curves on $\{\bf C\} P(3)$. We give an example of a foliation on $\{\bf C\} P(3)$ with no invariant algebraic set (curve or surface) and prove that a dense set of foliations admits no invariant algebraic set.},
author = {Soares, Marcio G.},
journal = {Annales de l'institut Fourier},
keywords = {foliations by curves on },
language = {eng},
number = {1},
pages = {143-162},
publisher = {Association des Annales de l'Institut Fourier},
title = {On algebraic sets invariant by one-dimensional foliations on $\{\bf C\}P(3)$},
url = {http://eudml.org/doc/74985},
volume = {43},
year = {1993},
}
TY - JOUR
AU - Soares, Marcio G.
TI - On algebraic sets invariant by one-dimensional foliations on ${\bf C}P(3)$
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 1
SP - 143
EP - 162
AB - We consider the problem of extending the result of J.-P. Jouanolou on the density of singular holomorphic foliations on ${\bf C} P(2)$ without algebraic solutions to the case of foliations by curves on ${\bf C} P(3)$. We give an example of a foliation on ${\bf C} P(3)$ with no invariant algebraic set (curve or surface) and prove that a dense set of foliations admits no invariant algebraic set.
LA - eng
KW - foliations by curves on
UR - http://eudml.org/doc/74985
ER -
References
top- [A] V. ARNOL'D, Chapitres Supplémentaires de la Théorie des Equations Differentielles Ordinaires, Ed. MIR, Moscou, 1980. Zbl0956.34501MR83a:34003
- [BB] P. BAUM, R. BOTT, Singularities of Holomorphic Foliations, J. Differential Geometry, vol. 7 (1972), 279-342. Zbl0268.57011MR51 #14092
- [C] S. S. CHERN, Meromorphic Vector Fields and Characteristic Numbers, Scripta Mathematica, vol. XXIX, no 3-4. Zbl0265.32013
- [CS] C. CAMACHO, P. SAD, Invariant Varieties through Singularities of Holomorphic Vector Fields, Annals of Math., 115 (1982), 579-595. Zbl0503.32007MR83m:58062
- [GH] P. GRIFFITHS, J. HARRIS, Principles of Algebraic Geometry, John Wiley, New York, 1978. Zbl0408.14001MR80b:14001
- [GM-OB] X. GOMEZ-MONT, L. O-BOBADILLA, Sistemas Dinamicos Holomorfos en Superficies, Aportaciones Matematicas 3, Sociedad Mexicana de Matematica (1989). Zbl0855.58049MR95j:32046
- [J] J. P. JOUANOLOU, Equations de Pfaff Algebriques, LNM 708, Springer-Verlag (1979). Zbl0477.58002MR81k:14008
- [L] D. LEHMANN, Residues for Invariant Submanifolds of Foliations with Singularities, Annales de l'Institut Fourier, vol. 41, fasc. 1 (1991), 211-258. Zbl0727.57024MR92k:57054
- [LN1] A. LINS NETO, Algebraic Solutions of Polynomial Differential Equations and Foliations in Dimension Two, LNM 1345, Springer-Verlag (1988). Zbl0677.58036MR90c:58142
- [LN2]A. LINS NETO, Complex Codimension One Foliations leaving a Compact Submanifold Invariant, Dynamical Systems and Bifurcation Theory, Pitman Research Notes in Mathematics Series, vol. 160 (1987). Zbl0647.57017MR88m:57036
- [PM] J. PALIS, W. de MELO, Geometric Theory of Dynamical Systems, Springer-Verlag (1982). Zbl0491.58001
- [S] K. SAITO, Quasihomogene Isolierte Singularitäten von Hyperflächen, Inventiones Math., 14 (1971), 123-142. Zbl0224.32011MR45 #3767
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.