On algebraic sets invariant by one-dimensional foliations on 𝐂 P ( 3 )

Marcio G. Soares

Annales de l'institut Fourier (1993)

  • Volume: 43, Issue: 1, page 143-162
  • ISSN: 0373-0956

Abstract

top
We consider the problem of extending the result of J.-P. Jouanolou on the density of singular holomorphic foliations on C P ( 2 ) without algebraic solutions to the case of foliations by curves on C P ( 3 ) . We give an example of a foliation on C P ( 3 ) with no invariant algebraic set (curve or surface) and prove that a dense set of foliations admits no invariant algebraic set.

How to cite

top

Soares, Marcio G.. "On algebraic sets invariant by one-dimensional foliations on ${\bf C}P(3)$." Annales de l'institut Fourier 43.1 (1993): 143-162. <http://eudml.org/doc/74985>.

@article{Soares1993,
abstract = {We consider the problem of extending the result of J.-P. Jouanolou on the density of singular holomorphic foliations on $\{\bf C\} P(2)$ without algebraic solutions to the case of foliations by curves on $\{\bf C\} P(3)$. We give an example of a foliation on $\{\bf C\} P(3)$ with no invariant algebraic set (curve or surface) and prove that a dense set of foliations admits no invariant algebraic set.},
author = {Soares, Marcio G.},
journal = {Annales de l'institut Fourier},
keywords = {foliations by curves on },
language = {eng},
number = {1},
pages = {143-162},
publisher = {Association des Annales de l'Institut Fourier},
title = {On algebraic sets invariant by one-dimensional foliations on $\{\bf C\}P(3)$},
url = {http://eudml.org/doc/74985},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Soares, Marcio G.
TI - On algebraic sets invariant by one-dimensional foliations on ${\bf C}P(3)$
JO - Annales de l'institut Fourier
PY - 1993
PB - Association des Annales de l'Institut Fourier
VL - 43
IS - 1
SP - 143
EP - 162
AB - We consider the problem of extending the result of J.-P. Jouanolou on the density of singular holomorphic foliations on ${\bf C} P(2)$ without algebraic solutions to the case of foliations by curves on ${\bf C} P(3)$. We give an example of a foliation on ${\bf C} P(3)$ with no invariant algebraic set (curve or surface) and prove that a dense set of foliations admits no invariant algebraic set.
LA - eng
KW - foliations by curves on
UR - http://eudml.org/doc/74985
ER -

References

top
  1. [A] V. ARNOL'D, Chapitres Supplémentaires de la Théorie des Equations Differentielles Ordinaires, Ed. MIR, Moscou, 1980. Zbl0956.34501MR83a:34003
  2. [BB] P. BAUM, R. BOTT, Singularities of Holomorphic Foliations, J. Differential Geometry, vol. 7 (1972), 279-342. Zbl0268.57011MR51 #14092
  3. [C] S. S. CHERN, Meromorphic Vector Fields and Characteristic Numbers, Scripta Mathematica, vol. XXIX, no 3-4. Zbl0265.32013
  4. [CS] C. CAMACHO, P. SAD, Invariant Varieties through Singularities of Holomorphic Vector Fields, Annals of Math., 115 (1982), 579-595. Zbl0503.32007MR83m:58062
  5. [GH] P. GRIFFITHS, J. HARRIS, Principles of Algebraic Geometry, John Wiley, New York, 1978. Zbl0408.14001MR80b:14001
  6. [GM-OB] X. GOMEZ-MONT, L. O-BOBADILLA, Sistemas Dinamicos Holomorfos en Superficies, Aportaciones Matematicas 3, Sociedad Mexicana de Matematica (1989). Zbl0855.58049MR95j:32046
  7. [J] J. P. JOUANOLOU, Equations de Pfaff Algebriques, LNM 708, Springer-Verlag (1979). Zbl0477.58002MR81k:14008
  8. [L] D. LEHMANN, Residues for Invariant Submanifolds of Foliations with Singularities, Annales de l'Institut Fourier, vol. 41, fasc. 1 (1991), 211-258. Zbl0727.57024MR92k:57054
  9. [LN1] A. LINS NETO, Algebraic Solutions of Polynomial Differential Equations and Foliations in Dimension Two, LNM 1345, Springer-Verlag (1988). Zbl0677.58036MR90c:58142
  10. [LN2]A. LINS NETO, Complex Codimension One Foliations leaving a Compact Submanifold Invariant, Dynamical Systems and Bifurcation Theory, Pitman Research Notes in Mathematics Series, vol. 160 (1987). Zbl0647.57017MR88m:57036
  11. [PM] J. PALIS, W. de MELO, Geometric Theory of Dynamical Systems, Springer-Verlag (1982). Zbl0491.58001
  12. [S] K. SAITO, Quasihomogene Isolierte Singularitäten von Hyperflächen, Inventiones Math., 14 (1971), 123-142. Zbl0224.32011MR45 #3767

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.