The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Some remarks on descriptive characterizations of the strong McShane integral

Sokol Bush Kaliaj — 2019

Mathematica Bohemica

We present the full descriptive characterizations of the strong McShane integral (or the variational McShane integral) of a Banach space valued function f : W X defined on a non-degenerate closed subinterval W of m in terms of strong absolute continuity or, equivalently, in terms of McShane variational measure V F generated by the primitive F : W X of f , where W is the family of all closed non-degenerate subintervals of W .

New extension of the variational McShane integral of vector-valued functions

Sokol Bush Kaliaj — 2019

Mathematica Bohemica

We define the Hake-variational McShane integral of Banach space valued functions defined on an open and bounded subset G of m -dimensional Euclidean space m . It is a “natural” extension of the variational McShane integral (the strong McShane integral) from m -dimensional closed non-degenerate intervals to open and bounded subsets of m . We will show a theorem that characterizes the Hake-variational McShane integral in terms of the variational McShane integral. This theorem reduces the study of our...

Page 1

Download Results (CSV)