The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a pure simplicial complex on the vertex set and its Stanley-Reisner ideal in the polynomial ring . We show that is a matroid (complete intersection) if and only if () is clean for all and this is equivalent to saying that (, respectively) is Cohen-Macaulay for all . By this result, we show that there exists a monomial ideal with (pretty) cleanness property while or is not (pretty) clean for all integer . If , we also prove that () is clean if and only if (,...
Let be a field and . Let be a monomial ideal of and be monomials in . We prove that if form a filter-regular sequence on , then is pretty clean if and only if is pretty clean. Also, we show that if form a filter-regular sequence on , then Stanley’s conjecture is true for if and only if it is true for . Finally, we prove that if is a minimal set of generators for which form either a -sequence, proper sequence or strong -sequence (with respect to the reverse lexicographic...
Download Results (CSV)