In this paper we study a one dimensional model of ferromagnetic nano-wires of finite length. First we justify the model by Γ-convergence arguments. Furthermore we prove the existence of wall profiles. These walls being unstable, we stabilize them by the mean of an applied magnetic field.
In this paper we study a one dimensional model of ferromagnetic nano-wires of finite
length. First we justify the model by Γ-convergence arguments.
Furthermore we prove the existence of wall profiles. These walls being unstable, we
stabilize them by the mean of an applied magnetic field.
The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations 16 (2003) 1039–1064; Pego and Quintero, Physica D 132 (1999) 476–496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study here numerically...
The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond,
(2003) 1039–1064; Pego and Quintero,
(1999) 476–496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study here numerically the link...
In this paper we study a one dimensional model of ferromagnetic nano-wires of finite
length. First we justify the model by Γ-convergence arguments.
Furthermore we prove the existence of wall profiles. These walls being unstable, we
stabilize them by the mean of an applied magnetic field.
Download Results (CSV)