Computers are becoming sufficiently powerful to permit to numerically solve problems such as the wave equation with high-order methods. In this article we will consider Lagrange finite elementsof order k and show how it is possible to automatically generate the mass and stiffness matrices of any order with the help of symbolic computation software. We compare two high-order time discretizations: an explicit one using a Taylor expansion in time (a Cauchy-Kowalewski procedure) and an implicit Runge-Kutta...
Saccular aneurisms, swelling of a blood vessel, are investigated in order (i) to estimate the development risk of the wall lesion, before and after intravascular treatment, assuming that the pressure is the major factor, and (ii) to better plan medical interventions. Numerical simulations, using the finite element method, are performed in three-dimensional aneurisms. Computational meshes are derived from medical imaging data to take into account both between-subject and within-subject anatomical...
Saccular aneurisms, swelling of a blood vessel,
are investigated in order (i) to estimate the development risk of
the wall lesion, before and after intravascular treatment,
assuming that the pressure is the major factor,
and (ii) to better plan medical interventions.
Numerical simulations, using the finite element method,
are performed in three-dimensional aneurisms.
Computational meshes are derived from medical imaging data
to take into account both between-subject and within-subject
anatomical...
The aim of this work is to perform the computation of the blood flow in all the cerebral network, obtained from medical images as angiographies. We use free finite elements codes as FreeFEM++. We first test the code on analytical solutions in simplified geometries. Then, we study the influence of boundary conditions on the flow and we finally perform first computations on realistic meshes.
Download Results (CSV)