The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

A simpler proof of toroidalization of morphisms from 3-folds to surfaces

Steven Dale Cutkosky — 2013

Annales de l’institut Fourier

We give a simpler and more conceptual proof of toroidalization of morphisms of 3-folds to surfaces, over an algebraically closed field of characteristic zero. A toroidalization is obtained by performing sequences of blow ups of nonsingular subvarieties above the domain and range, to make a morphism toroidal. The original proof of toroidalization of morphisms of 3-folds to surfaces is much more complicated.

Local monomialization of transcendental extensions

Steven Dale CUTKOSKY — 2005

Annales de l’institut Fourier

Suppose that R S are regular local rings which are essentially of finite type over a field k of characteristic zero. If V is a valuation ring of the quotient field K of S which dominates S , then we show that there are sequences of monoidal transforms (blow ups of regular primes) R R 1 and S S 1 along V such that R 1 S 1 is a monomial mapping. It follows that a morphism of nonsingular varieties can be made to be a monomial mapping along a valuation, after blow ups of nonsingular subvarieties.

Formal prime ideals of infinite value and their algebraic resolution

Steven Dale CutkoskySamar ElHitti — 2010

Annales de la faculté des sciences de Toulouse Mathématiques

Suppose that R is a local domain essentially of finite type over a field of characteristic 0 , and ν a valuation of the quotient field of R which dominates R . The rank of such a valuation often increases upon extending the valuation to a valuation dominating R ^ , the completion of R . When the rank of ν is 1 , Cutkosky and Ghezzi handle this phenomenon by resolving the prime ideal of infinite value, but give an example showing that when the rank is greater than 1 , there is no natural ideal in R ^ that...

Page 1

Download Results (CSV)