On a generalization of the Corona problem.
Dato un sistema omogeneo di equazioni di convoluzione in spazi dotati di strutture analiticamente uniformi, si forniscono condizioni per ottenere teoremi di rappresentazione per le sue soluzioni.
Dato un sistema omogeneo di equazioni di convoluzione in spazi dotati di strutture analiticamente uniformi, si forniscono condizioni per ottenere teoremi di rappresentazione per le sue soluzioni.
Propagation of regularity is considered for solutions of rectangular systems of infinite order partial differential equations (resp. convolution equations) in spaces of hyperfunctions (resp. C functions and distributions). Known resulys of this kind are recovered as particular cases, when finite order partial differential equations are considered.
In this paper we prove that the projective dimension of is , where is the ring of polynomials in variables with complex coefficients, and is the module generated by the columns of a matrix which arises as the Fourier transform of the matrix of differential operators associated with the regularity condition for a function of quaternionic variables. As a corollary we show that the sheaf of regular functions has flabby dimension , and we prove a cohomology vanishing theorem for open...
Page 1