Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On wsq-primary ideals

Emel Aslankarayiğit UğurluEl Mehdi BoubaÜnsal TekirSuat Koç — 2023

Czechoslovak Mathematical Journal

We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let R be a commutative ring with a nonzero identity and Q a proper ideal of R . The proper ideal Q is said to be a weakly strongly quasi-primary ideal if whenever 0 a b Q for some a , b R , then a 2 Q or b Q . Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional...

Commutative graded- S -coherent rings

Anass AssarrarNajib MahdouÜnsal TekirSuat Koç — 2023

Czechoslovak Mathematical Journal

Recently, motivated by Anderson, Dumitrescu’s S -finiteness, D. Bennis, M. El Hajoui (2018) introduced the notion of S -coherent rings, which is the S -version of coherent rings. Let R = α G R α be a commutative ring with unity graded by an arbitrary commutative monoid G , and S a multiplicatively closed subset of nonzero homogeneous elements of R . We define R to be graded- S -coherent ring if every finitely generated homogeneous ideal of R is S -finitely presented. The purpose of this paper is to give the graded...

Page 1

Download Results (CSV)