We show that if T is an uncountable Polish space, 𝓧 is a metrizable space and f:T→ 𝓧 is a weakly Baire measurable function, then we can find a meagre set M ⊆ T such that f[T∖M] is a separable space. We also give an example showing that "metrizable" cannot be replaced by "normal".
Assume that no cardinal κ < 2ω is quasi-measurable (κ is quasi-measurable if there exists a κ-additive ideal of subsets of κ such that the Boolean algebra P(κ)/ satisfies c.c.c.). We show that for a metrizable separable space X and a proper c.c.c. σ-ideal II of subsets of X that has a Borel base, each point-finite cover ⊆
of X contains uncountably many pairwise disjoint subfamilies , with
-Bernstein unions ∪ (a subset A ⊆ X is
-Bernstein if A and X A meet each Borel
-positive subset...
Let be a Polish ideal space and let be any set. We show that under some conditions on a relation it is possible to find a set such that is completely -nonmeasurable, i.e, it is -nonmeasurable in every positive Borel set. We also obtain such a set simultaneously for continuum many relations Our results generalize those from the papers of K. Ciesielski, H. Fejzić, C. Freiling and M. Kysiak.
A subset of the plane is called a two point set if it intersects any line in exactly two points. We give constructions of two point sets possessing some additional properties. Among these properties we consider: being a Hamel base, belonging to some -ideal, being (completely) nonmeasurable with respect to different -ideals, being a -covering. We also give examples of properties that are not satisfied by any two point set: being Luzin, Sierpiński and Bernstein set. We also consider natural generalizations...
Download Results (CSV)