The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

On the Converse of Caristi's Fixed Point Theorem

Szymon Głąb — 2004

Bulletin of the Polish Academy of Sciences. Mathematics

Let X be a nonempty set of cardinality at most 2 and T be a selfmap of X. Our main theorem says that if each periodic point of T is a fixed point under T, and T has a fixed point, then there exist a metric d on X and a lower semicontinuous map ϕ :X→ ℝ ₊ such that d(x,Tx) ≤ ϕ(x) - ϕ(Tx) for all x∈ X, and (X,d) is separable. Assuming CH (the Continuum Hypothesis), we deduce that (X,d) is compact.

Large free subgroups of automorphism groups of ultrahomogeneous spaces

Szymon GłąbFilip Strobin — 2015

Colloquium Mathematicae

We consider the following notion of largeness for subgroups of S . A group G is large if it contains a free subgroup on generators. We give a necessary condition for a countable structure A to have a large group Aut(A) of automorphisms. It turns out that any countable free subgroup of S can be extended to a large free subgroup of S , and, under Martin’s Axiom, any free subgroup of S of cardinality less than can also be extended to a large free subgroup of S . Finally, if Gₙ are countable groups, then...

Dichotomies for 𝐂 0 ( X ) and 𝐂 b ( X ) spaces

Szymon GłąbFilip Strobin — 2013

Czechoslovak Mathematical Journal

Jachymski showed that the set ( x , y ) 𝐜 0 × 𝐜 0 : i = 1 n α ( i ) x ( i ) y ( i ) n = 1 is bounded is either a meager subset of 𝐜 0 × 𝐜 0 or is equal to 𝐜 0 × 𝐜 0 . In the paper we generalize this result by considering more general spaces than 𝐜 0 , namely 𝐂 0 ( X ) , the space of all continuous functions which vanish at infinity, and 𝐂 b ( X ) , the space of all continuous bounded functions. Moreover, we replace the meagerness by σ -porosity.

Dichotomies for Lorentz spaces

Szymon GłąbFilip StrobinChan Yang — 2013

Open Mathematics

Assume that L p,q, L p 1 , q 1 , . . . , L p n , q n are Lorentz spaces. This article studies the question: what is the size of the set E = { ( f 1 , . . . , f n ) L p 1 , q 1 × × L p n , q n : f 1 f n L p , q } . We prove the following dichotomy: either E = L p 1 , q 1 × × L p n , q n or E is σ-porous in L p 1 , q 1 × × L p n , q n , provided 1/p ≠ 1/p 1 + … + 1/p n. In general case we obtain that either E = L p 1 , q 1 × × L p n , q n or E is meager. This is a generalization of the results for classical L p spaces.

Algebraic and topological properties of some sets in ℓ₁

Taras BanakhArtur BartoszewiczSzymon GłąbEmilia Szymonik — 2012

Colloquium Mathematicae

For a sequence x ∈ ℓ₁∖c₀₀, one can consider the set E(x) of all subsums of the series n = 1 x ( n ) . Guthrie and Nymann proved that E(x) is one of the following types of sets: () a finite union of closed intervals; () homeomorphic to the Cantor set; homeomorphic to the set T of subsums of n = 1 b ( n ) where b(2n-1) = 3/4ⁿ and b(2n) = 2/4ⁿ. Denote by ℐ, and the sets of all sequences x ∈ ℓ₁∖c₀₀ such that E(x) has the property (ℐ), () and ( ), respectively. We show that ℐ and are strongly -algebrable and is -lineable. We...

Large structures made of nowhere L q functions

Szymon GłąbPedro L. KaufmannLeonardo Pellegrini — 2014

Studia Mathematica

We say that a real-valued function f defined on a positive Borel measure space (X,μ) is nowhere q-integrable if, for each nonvoid open subset U of X, the restriction f | U is not in L q ( U ) . When (X,μ) has some natural properties, we show that certain sets of functions defined in X which are p-integrable for some p’s but nowhere q-integrable for some other q’s (0 < p,q < ∞) admit a variety of large linear and algebraic structures within them. The presented results answer a question of Bernal-González,...

Two point sets with additional properties

Marek BieniasSzymon GłąbRobert RałowskiSzymon Żeberski — 2013

Czechoslovak Mathematical Journal

A subset of the plane is called a two point set if it intersects any line in exactly two points. We give constructions of two point sets possessing some additional properties. Among these properties we consider: being a Hamel base, belonging to some σ -ideal, being (completely) nonmeasurable with respect to different σ -ideals, being a κ -covering. We also give examples of properties that are not satisfied by any two point set: being Luzin, Sierpiński and Bernstein set. We also consider natural generalizations...

Page 1

Download Results (CSV)