CONTENTS1. The presentation of the problem........................................................................................................ 51.1. Introduction.......................................................................................................................................... 51.2. The presentation of the known results........................................................................................... 52. The recurrence relations for the moments about the origin.............................................................
This paper presents a compound of the generalized negative binomial distribution with the generalized beta distribution. In the introductory part of the paper, we provide a chronological overview of recent developments in the compounding of distributions, including the Polish results. Then, in addition to presenting the probability function of the compound generalized negative binomial-generalized beta distribution, we present special cases as well as factorial and crude moments of some compound...
The year 2015 marked the 110th anniversary of the birth of a Łódź-based scholar , a mathematician dealing mainly with probability theory and statistics. As the first PhD defending under his direction and a longtime collaborator, I would like to recall the professor's personage because of his great merits in educating Polish academic youth, especially in Łódź.
In this paper a new definition of a lattice valued intuitionistic fuzzy set (LIFS) is introduced, in an attempt to overcome the disadvantages of earlier definitions. Some properties of this kind of fuzzy sets and their basic operations are given. The theorem of synthesis is proved: For every two families of subsets of a set satisfying certain conditions, there is an lattice valued intuitionistic fuzzy set for which these are families of level sets.
The authors continue the study of incomplete moments of discrete distributions by Gerstenkorn [Rev. Roumaine Math. Pures Appl. 26 (1981), no. 3, 405–416; MR0627288; Bull. Inst. Internat. Statist. 46 (1975), no. 3, 290–297; MR0471020]. For a discrete nonnegative random variable X, the left incomplete factorial moment of order l truncated at s is defined by ∑sx=0x(x−1)⋯(x−(l−1))P(X=x). The authors evaluate the left incomplete factorial moments of the inverse Polya distribution (Theorem 1). From this...
Download Results (CSV)