The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Given a set A ⊂ ℕ let denote the number of ordered pairs (a,a’) ∈ A × A such that a + a’ = n. Erdős and Turán conjectured that for any asymptotic basis A of ℕ, is unbounded. We show that the analogue of the Erdős-Turán conjecture does not hold in the abelian group (ℤₘ,+), namely, for any natural number m, there exists a set A ⊆ ℤₘ such that A + A = ℤₘ and for all n̅ ∈ ℤₘ.
Recently, Miyazaki and Togbé proved that for any fixed odd integer b ≥ 5 with b ≠ 89, the Diophantine equation has only the solution (x,y,z) = (1,1,1). We give an extension of this result.
For a positive integer n, let σ(n) denote the sum of the positive divisors of n. We call n a near-perfect number if σ(n) = 2n + d where d is a proper divisor of n. We show that the only odd near-perfect number with four distinct prime divisors is 3⁴·7²·11²·19².
Let , where n ∈ N and A is a subset of N. Erdős and Turán conjectured that for any basis A of order 2 of N, is unbounded. In 1990, Imre Z. Ruzsa constructed a basis A of order 2 of N for which is bounded in the square mean. In this paper, we show that there exists a positive integer m₀ such that, for any integer m ≥ m₀, we have a set A ⊂ Zₘ such that A + A = Zₘ and for all n̅ ∈ Zₘ.
It is known that a set of positive integers is a Poincaré set (also called intersective set, see I. Ruzsa (1982)) if and only if , where
and denotes the Hausdorff dimension (see C. Bishop, Y. Peres (2017), Theorem 2.5.5). In this paper we study the set by replacing with . It is surprising that there are some new phenomena to be worthy of studying. We study them and give several examples to explain our results.
For a positive integer n, let σ(n) denote the sum of the positive divisors of n. Let d be a proper divisor of n. We call n a near-perfect number if σ(n) = 2n + d, and a deficient-perfect number if σ(n) = 2n - d. We show that there is no odd near-perfect number with three distinct prime divisors and determine all deficient-perfect numbers with at most two distinct prime factors.
Download Results (CSV)