Positive solutions of a nonlinear three-point integral boundary value problem.
In this paper, we investigate the existence of positive solutions for Hadamard type fractional differential system with coupled nonlocal fractional integral boundary conditions on an infinite domain. Our analysis relies on Guo-Krasnoselskii’s and Leggett-Williams fixed point theorems. The obtained results are well illustrated with the aid of examples.
In this paper, we investigate oscillation results for the solutions of impulsive conformable fractional differential equations of the form tkDαpttkDαxt+rtxt+qtxt=0,t≥t0,t≠tk,xtk+=akx(tk−),tkDαxtk+=bktk−1Dαx(tk−),k=1,2,…. Some new oscillation results are obtained by using the equivalence transformation and the associated Riccati techniques.
In this paper, we study a new class of three-point boundary value problems of nonlinear second-order q-difference inclusions. Our problems contain different numbers of q in derivatives and integrals. By using fixed point theorems, some new existence results are obtained in the cases when the right-hand side has convex as well as noncovex values.
In this paper we study an existence result for initial value problems for hybrid fractional integro-differential inclusions. A hybrid fixed point theorem for a sum of three operators due to Dhage is used. An example illustrating the obtained result is also presented.
In this paper we study existence and uniqueness of solutions for a system consisting from fractional differential equations of Riemann-Liouville type subject to nonlocal Erdélyi-Kober fractional integral conditions. The existence and uniqueness of solutions is established by Banach’s contraction principle, while the existence of solutions is derived by using Leray-Schauder’s alternative. Examples illustrating our results are also presented.
Page 1