The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A natural number is said to be a -integer if , where and is not divisible by the th power of any prime. We study the distribution of such -integers in the Piatetski-Shapiro sequence with . As a corollary, we also obtain similar results for semi--free integers.
Let and . Denote by the set of all integers whose canonical prime representation has all exponents
being a multiple of or belonging to the arithmetic progression , . All integers in are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given.
We use the estimation of the number of integers such that belongs to an arithmetic progression to study the coprimality of integers in , , .
Download Results (CSV)