The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let (Ω, σ) be a measurable space and K a nonempty bounded closed convex separable subset of a p-uniformly convex Banach space E for p > 1. We prove a random fixed point theorem for a class of mappings T:Ω×K ∪ K satisfying the condition:
For each x, y ∈ K, ω ∈ Ω and integer n ≥ 1,
⃦Tⁿ(ω,x) - Tⁿ(ω,y) ⃦
≤ aₙ(ω)· ⃦x - y ⃦ + bₙ(ω) ⃦x -Tⁿ(ω,x) ⃦ + ⃦y - Tⁿ(ω,y) ⃦
+ cₙ(ω) ⃦x - Tⁿ(ω,y) ⃦ + ⃦y - Tⁿ(ω,x) ⃦,
where aₙ, bₙ, cₙ: Ω → [0, ∞) are functions satisfying certain conditions and Tⁿ(ω,x) is the value...
Let be a measurable space and a nonempty bounded closed convex separable subset of -uniformly convex Banach space for some . We prove random fixed point theorems for a class of mappings satisfying: for each , and integer ,
where are functions satisfying certain conditions and is the value at of the -th iterate of the mapping . Further we establish for these mappings some random fixed point theorems in a Hilbert space, in spaces, in Hardy spaces and in Sobolev spaces ...
Download Results (CSV)