The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Limit laws of transient excited random walks on integers

Elena KosyginaThomas Mountford — 2011

Annales de l'I.H.P. Probabilités et statistiques

We consider excited random walks (ERWs) on ℤ with a bounded number of i.i.d. cookies per site without the non-negativity assumption on the drifts induced by the cookies. Kosygina and Zerner [15] have shown that when the total expected drift per site, , is larger than 1 then ERW is transient to the right and, moreover, for >4 under the averaged measure it obeys the Central Limit Theorem. We show that when ∈(2, 4] the limiting behavior of an appropriately centered and scaled excited random...

An asymptotic result for brownian polymers

Thomas MountfordPierre Tarrès — 2008

Annales de l'I.H.P. Probabilités et statistiques

We consider a model of the shape of a growing polymer introduced by Durrett and Rogers ( (1992) 337–349). We prove their conjecture about the asymptotic behavior of the underlying continuous process (corresponding to the location of the end of the polymer at time ) for a particular type of repelling interaction function without compact support.

Page 1

Download Results (CSV)