The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Minimal Subspaces with Maximal Dimensioanal Diameters Минимални попространства с максимални размерностни диаметри

Todorov, Vladimir — 2011

Union of Bulgarian Mathematicians

Владимир Тодоров - Нека X е компактно метрично пространство с dim X = n. Тогава за n − 1 - мерния диаметър dn−1(X) на X е изпълнено неравенството dn−1(X) > 0, докато dn(X) = 0 (да отбележим, че това е една от характеристиките на размерността на Лебег). От тук се получава, че X съдържа минимално по включване затворено подмножество Y , за което dn−1(Y ) = dn−1(X). Известен резултат е, че от това следва, че Y е Канторово Многообразие. В тази бележка доказваме, че всяко такова (минимално) подпространство...

Every N-Dimensional Separable Metric Space Contains a Totally Disconnected (n-1)-Dimensional Subset with no True Quasi-Components Всяко n-мерно сепарабелно метрично пространство съдържа напълно несвързано (n − 1)-мерно подмножество с едноточкови квазикомпоненти

Todorov, VladimirStoev, Petar — 2010

Union of Bulgarian Mathematicians

Владимир Тодоров, Петър Стоев - Тази бележка съдържа елементарна конструкция на множество с указаните в заглавието свойства. Да отбележим в допълнение, че така полученото множество остава напълно несвързано дори и след като се допълни с краен брой елементи. The quasi-component Q(x) of a point x of a topological space X is by definition the intersection of all open and closed subsets of X, every one of which contains x. If a quasi-component consists of more than one point, it is called...

Page 1

Download Results (CSV)