On s-sets and mutual absolute continuity of measures on homogeneous spaces.
We consider real valued functions defined on a subinterval of the positive real axis and prove that if all of ’s quantum differences are nonnegative then has a power series representation on . Further, if the quantum differences have fixed sign on then is analytic on .
Let be a closed subset of and let denote the metric projection (closest point mapping) of onto in -norm. A classical result of Asplund states that is (Fréchet) differentiable almost everywhere (a.e.) in in the Euclidean case . We consider the case and prove that the th component of is differentiable a.e. if and satisfies Hölder condition of order if .
Page 1