The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Estimates are provided for sth moments of cubic smooth Weyl sums, when 4 ≤ s ≤ 8, by enhancing the author's iterative method that delivers estimates beyond classical convexity. As a consequence, an improved lower bound is presented for the number of integers not exceeding X that are represented as the sum of three cubes of natural numbers.
We establish the non-singular Hasse principle for pairs of diagonal quartic equations in 22 or more variables. Our methods involve the estimation of a certain entangled two-dimensional 21st moment of quartic smooth Weyl sums via a novel cubic moment of Fourier coefficients.
Download Results (CSV)