On the Lavrentieff phenomenon for some classes of Dirichlet minimum points.
We state and prove a chain rule formula for the composition of a vector-valued function by a globally Lipschitz-continuous, piecewise function . We also prove that the map is continuous from into for the strong topologies of these spaces.
We state and prove a stability result for the anisotropic version of the isoperimetric inequality. Namely if is a set with small anisotropic isoperimetric deficit, then is “close” to the Wulff shape set.
Page 1