The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On absolutely-nilpotent of class k groups

Patrizia LongobardiTrueman MacHenryMercede MajJames Wiegold — 1995

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A group G in a variety V is said to be absolutely- V , and we write G A V , if central extensions by G are again in V . Absolutely-abelian groups have been classified by F. R. Beyl. In this paper we concentrate upon the class A N k of absolutely-nilpotent of class k groups. We prove some closure properties of the class A N k and we show that every nilpotent of class k group can be embedded in an A N k -gvoup. We describe all metacyclic A N k -groups and we characterize 2 -generator and infinite 3 -generator A N 2 -groups. Finally...

Page 1

Download Results (CSV)